Category Archives: News

Multiple Antenna Technologies for Beyond 5G

I am one of the guest editors of the JSAC special issue on “Multiple Antenna Technologies for Beyond 5G” which had its submission deadline on October 1. We received 133 submissions that span emerging topics such as Cell-free Massive MIMO, intelligent reflective surfaces, terahertz communications, new hardware architectures (e.g., lens arrays), and index modulation. It will take a lot of hard work to review all these submissions, but I am convinced that the selected papers will be of high quality and present a range of interesting concepts that can be utilized in beyond 5G systems.

In addition to the technical papers, the guest editors have also written a survey paper that has the same name as the special issue. A draft of it is available on arXiv. This paper describes the state-of-the-art and open problems related to several of the topics described above.

The Role of Massive MIMO in 5G Deployments

The support for mmWave spectrum is a key feature of 5G, but mmWave communication is also known to be inherently unreliable due to the blockage and penetration losses, as can be demonstrated in this simple way:

This is why the sub-6 GHz bands will continue to be the backbone of the future 5G networks, just as in previous cellular generations, while mmWave bands will define the best-case performance. A clear example of this is the 5G deployment strategy of the US operator Sprint, which I heard about in a keynote by John Saw, CTO at Sprint, at the Brooklyn 5G Summit. (Here is a video of the keynote.)

Sprint will use spectrum in the 600 MHz band to achieve wide-spread 5G coverage. This low frequency will enable spatial multiplexing of many users if Massive MIMO is used, but the data rates per user will be rather limited since only a few tens of MHz of bandwidth is available. Nevertheless, this band will define the guaranteed service level of the 5G network.

In addition, Sprint has 120 MHz of TDD spectrum in the 2.5 GHz band and are deploying 64-antenna Massive MIMO base stations in many major cities; there will be more than 1000 sites in 2019. These can both be used to simultaneously do spatial multiplexing of many users and to improve the per-user data rates thanks to the beamforming gains. John Saw pointed out that the word “massive” in Massive MIMO sounds scary, but the actual arrays are neat and compact in the 2.5 GHz band. He also explained that this frequency band supports high mobility, which is very challenging at mmWave frequencies. The mobility support is demonstrated in the following video:

The initial tests of Sprint’s Massive MIMO systems pretty much confirm the theoretical predictions. In Plano, Texas, a 3.4x gain in downlink sum rates and 8.9x gain in uplink sum rates were observed when comparing 64-antenna and 8-antenna panels. These gains come from a combination of spatial multiplexing and beamforming; this is particularly evident in the uplink where the rates increased faster than the number of antennas. Recent measurements at the Reston Town Center, Virginia, showed similar gains: between 4x and 20x improvements at different locations (see the image below).

Tom Marzetta, the originator of Massive MIMO, attended the keynote and gave me the following comment: “It is gratifying to hear the CTO of Sprint confirm, through actual commercial deployments, what the advocates of Massive MIMO have said for so long.”

Screenshot from the presentation at the Brooklyn 5G Summit, showing measured data rates before and after Massive MIMO was turned on.

Interestingly, Sprint noticed that their customers immediately used more data when Massive MIMO was turned on, and there were more simultaneous users in the network. This demonstrates the fact that whenever you create a more capable cellular network, the users will be encouraged to use more data and new use cases will gradually appear. This is why we need to continue looking for ways to improve the spectral efficiency beyond 5G and Massive MIMO.

Quantifying the Benefits of 64T64R Massive MIMO

Came across this study, which seems interesting: Data from the Sprint LTE TDD network, comparing performance side-by-side of 64T64R and 8T8R antenna systems.

From the results:

“We observed up to a 3.4x increase in downlink sector throughput and up to an 8.9x increase in the uplink sector throughput versus 8T8R (obviously the gain is substantially higher relative to 2T2R). Results varied based on the test conditions that we identified. Link budget tests revealed close to a triple-digit improvement in uplink data speeds.  Preliminary results for the downlink also showed strong gains. Future improvements in 64T64R are forthcoming based on likely vendor product roadmaps.”

Multiple Antenna Technologies for Beyond 5G

As this decade is approaching its end, so is the development of 5G technologies. The first 5G networks are currently begin deployed and, over the next few years, we will learn which features in the 5G standards that will actually be used and provide good performance.

When it comes to Massive MIMO for sub-6 GHz and mmWave bands, many of the previously open research problems have been resolved over the past five years – at least from an academic perspective. There are still important open problems at the border between theory and practical implementation. However, I strongly believe that this is a time when we should also look further into the future to identify the next big things.

To encourage more future-looking research, I joined as one of the guest editors of an upcoming special issue on Multiple Antenna Technologies for Beyond 5G in the IEEE Journal on Selected Areas in Communications (JSAC). The call for papers is available online and the submission deadline is 1 September 2019. Hence, if you start your research on this topic right away, you will have plenty of time to write a paper!

The call for papers identifies three promising directions: Cell-free Massive MIMO, Lens arrays, and Large intelligent surfaces. However, I am sure there are many other interesting research directions that are yet to be discovered. I recommend prospective authors to think creatively and look for the next big steps in the multiple antenna technologies. Remember that Massive MIMO was generally viewed as science fiction ten years ago, and now it is a reality!

If you are looking for inspiration, I’m recommending my recent overview paper: Massive MIMO is a Reality – What is Next? Five Promising Research Directions for Antenna Arrays.

Commercial 5G Networks

Some of the first 5G phones were announced at the Mobile World Congress last week. Many of these phones are reportedly based on the Snapdragon 855 Mobile Platform from Qualcomm, which supports 5G with up to 100 MHz bandwidth in sub-6 GHz bands and up to 800 MHz bandwidth in mmWave bands.

Despite all the fuss about mmWave being the key feature of 5G, it appears that the first commercial networks will utilize conventional sub-6 GHz bands; for example, Sprint will launch 5G using the 2.5 GHz band in nine major US cities from May to June 2019. Sprint is using Massive MIMO panels from Ericsson, Nokia, and Samsung. The reason to use the 2.5 GHz band is to achieve a reasonably wide network coverage with a limited number of base stations. The new Massive MIMO base stations will initially be used for both 4G and 5G. The following video details Sprint’s preparations for their 5G launch:

Another interesting piece of news from the Mobile World Congress is that 95% of the base stations that Huawei is currently shipping contain Massive MIMO with either 32 or 64 antennas.

Radio Stripes – Distributed Massive MIMO Deployment

Distributed MIMO deployments combine the best of two worlds: The beamforming gain and spatial interference suppression capability of conventional Massive MIMO with co-located arrays, and the bigger chance of being physically close to a service antenna that small cells offer. Coherent transmission and reception from a distributed MIMO array is not a new concept but has been given many names over the years, including Distributed Antenna System and Network MIMO. Most recently, in the beyond-5G era, it has been called ubiquitous Cell-free Massive MIMO communications and been refined based on insights and methodology developed through the research into conventional Massive MIMO.

One of the showstoppers for distributed MIMO has always been the high cost of deploying a large number of distributed antennas. Since the antennas need to be phase-synchronized and have access to the same data, a lot of high-capacity cables need to be deployed, particularly if a star topology is used. Ericsson is showcasing their new take on distributed MIMO at the 2019 Mobile World Congress (MWC), which is taking place in Barcelona this week. It is called radio stripes and some details can be found in a recent press release. In particular, Jan Hederén, strategist at Ericsson 4G5G Development, says:

Although a large-scale installation of distributed MIMO can provide excellent performance, it can also become an impractical and costly ‘spaghetti-monster’ of cables in case dedicated cables are used to connect the antenna elements. To be easy to deploy, we need to connect and integrate the antenna elements inside a single cable. We call this solution the ‘radio stripe’ which is an easy way to create a large scale distributed, serial, and integrated antenna system.”

Ericsson is showing a mockup of radio stripes at MWC 2019, with a total length of 2 kilometer. For those who cannot attend MWC, further conceptual details can be found in a recent overview paper on Cell-free Massive MIMO. An even more detailed description of radio stripes can be found in Ericsson’s patent application from 2017.

Molecular MIMO at IEEE CTW-2019

One more reason to attend the IEEE CTW 2019: Participate in the Molecular MIMO competition! There is a USD 500 award to the winning team.

The task is to design a molecular MIMO communication detection method using datasets that contain real measurements. Possible solutions may include classic approaches (e.g., thresholding-based detection) as well as deep learning-based approaches.

More detail: here.