Category Archives: News

Multiple Antenna Technologies for Beyond 5G

As this decade is approaching its end, so is the development of 5G technologies. The first 5G networks are currently begin deployed and, over the next few years, we will learn which features in the 5G standards that will actually be used and provide good performance.

When it comes to Massive MIMO for sub-6 GHz and mmWave bands, many of the previously open research problems have been resolved over the past five years – at least from an academic perspective. There are still important open problems at the border between theory and practical implementation. However, I strongly believe that this is a time when we should also look further into the future to identify the next big things.

To encourage more future-looking research, I joined as one of the guest editors of an upcoming special issue on Multiple Antenna Technologies for Beyond 5G in the IEEE Journal on Selected Areas in Communications (JSAC). The call for papers is available online and the submission deadline is 1 September 2019. Hence, if you start your research on this topic right away, you will have plenty of time to write a paper!

The call for papers identifies three promising directions: Cell-free Massive MIMO, Lens arrays, and Large intelligent surfaces. However, I am sure there are many other interesting research directions that are yet to be discovered. I recommend prospective authors to think creatively and look for the next big steps in the multiple antenna technologies. Remember that Massive MIMO was generally viewed as science fiction ten years ago, and now it is a reality!

If you are looking for inspiration, I’m recommending my recent overview paper: Massive MIMO is a Reality – What is Next? Five Promising Research Directions for Antenna Arrays.

Commercial 5G Networks

Some of the first 5G phones were announced at the Mobile World Congress last week. Many of these phones are reportedly based on the Snapdragon 855 Mobile Platform from Qualcomm, which supports 5G with up to 100 MHz bandwidth in sub-6 GHz bands and up to 800 MHz bandwidth in mmWave bands.

Despite all the fuss about mmWave being the key feature of 5G, it appears that the first commercial networks will utilize conventional sub-6 GHz bands; for example, Sprint will launch 5G using the 2.5 GHz band in nine major US cities from May to June 2019. Sprint is using Massive MIMO panels from Ericsson, Nokia, and Samsung. The reason to use the 2.5 GHz band is to achieve a reasonably wide network coverage with a limited number of base stations. The new Massive MIMO base stations will initially be used for both 4G and 5G. The following video details Sprint’s preparations for their 5G launch:

Another interesting piece of news from the Mobile World Congress is that 95% of the base stations that Huawei is currently shipping contain Massive MIMO with either 32 or 64 antennas.

Radio Stripes – Distributed Massive MIMO Deployment

Distributed MIMO deployments combine the best of two worlds: The beamforming gain and spatial interference suppression capability of conventional Massive MIMO with co-located arrays, and the bigger chance of being physically close to a service antenna that small cells offer. Coherent transmission and reception from a distributed MIMO array is not a new concept but has been given many names over the years, including Distributed Antenna System and Network MIMO. Most recently, in the beyond-5G era, it has been called ubiquitous Cell-free Massive MIMO communications and been refined based on insights and methodology developed through the research into conventional Massive MIMO.

One of the showstoppers for distributed MIMO has always been the high cost of deploying a large number of distributed antennas. Since the antennas need to be phase-synchronized and have access to the same data, a lot of high-capacity cables need to be deployed, particularly if a star topology is used. Ericsson is showcasing their new take on distributed MIMO at the 2019 Mobile World Congress (MWC), which is taking place in Barcelona this week. It is called radio stripes and some details can be found in a recent press release. In particular, Jan Hederén, strategist at Ericsson 4G5G Development, says:

Although a large-scale installation of distributed MIMO can provide excellent performance, it can also become an impractical and costly ‘spaghetti-monster’ of cables in case dedicated cables are used to connect the antenna elements. To be easy to deploy, we need to connect and integrate the antenna elements inside a single cable. We call this solution the ‘radio stripe’ which is an easy way to create a large scale distributed, serial, and integrated antenna system.”

Ericsson is showing a mockup of radio stripes at MWC 2019, with a total length of 2 kilometer. For those who cannot attend MWC, further conceptual details can be found in a recent overview paper on Cell-free Massive MIMO. An even more detailed description of radio stripes can be found in Ericsson’s patent application from 2017.

Molecular MIMO at IEEE CTW-2019

One more reason to attend the IEEE CTW 2019: Participate in the Molecular MIMO competition! There is a USD 500 award to the winning team.

The task is to design a molecular MIMO communication detection method using datasets that contain real measurements. Possible solutions may include classic approaches (e.g., thresholding-based detection) as well as deep learning-based approaches.

More detail: here.

MIMO Positioning Competition at IEEE CTW 2019

Come to the IEEE Communication Theory Workshop (CTW) 2019 and participate in the MIMO positioning competition!

The object of the competition is to design and train an algorithm that can determine the position of a user, based on estimated channel frequency responses between the user and an antenna array. Possible solutions may build on classic algorithms (fingerprinting, interpolation) or machine-learning approaches. Channel vectors from a dataset created with a MIMO channel sounder will be used.

Competing teams should present a poster at the conference, describing their algorithms and experiments.

A $500 USD prize will be awarded to the winning team.

More detail in this flyer.

Massive MIMO is Supporting the Super Bowl in Atlanta

When I went to high school in Sweden, some of my friends stayed up very late at night (due to the time difference) to watch the Super Bowl; the annual championship in the American football league. This game is generally not a big thing in Sweden, but it is huge in America.

This Sunday, the Super Bowl takes place in Atlanta and one million people are expected to come to downtown Atlanta, to either watch the game at the stadium or root for their teams in other ways. Hence, massive flows of images and videos will be posted on social media from people located in a fairly limited area. To prepare for the game, the telecom operators have upgraded their cellular networks and taken the opportunity to market their 5G efforts.

Massive MIMO in the sub-6 GHz band with 64 antennas (and 128 radiating elements) is a key technology to handle the given situation, where huge capacity can be achieved by spatially multiplexing a large number of users in the downtown. Massive MIMO is a “small box with a massive impact” Cyril Mazloum, Network Manager for Sprint in Atlanta, told Hypepotamus. This refers to the fact that the Massive MIMO equipment is, despite the naming, physically smaller than the legacy equipment it replaces. In the following video, Heather Campbell of the Sprint Network Team explains how a ten times higher capacity is achieved in the 2.5 GHz band by their Massive MIMO deployment, which I have also reported about before.

All the major cellular operators have upgraded their networks in preparation for the big game. AT&T has reportedly spent $43 million to deploy 1,500 new antennas. Verizon has installed 30 new macro sites, 300 new small cells, and upgraded the capacity of 150 existing sites. T-Mobile has reportedly boosted its network capacity by eight times. Massive MIMO and 5G are clearly one of the key technologies in all these cases.

Dataset with Channel Measurements for Distributed and Co-located Massive MIMO

Although there are nowadays many Massive MIMO testbeds around the world, there are very few open datasets with channel measurement results. This will likely change over the next few years, spurred by the need for having common datasets when applying and evaluating machine learning methods in wireless communications.

The Networked Systems group at KU Leuven has recently made the results from one of their measurement campaigns openly available. It includes 36 user positions and two base station configurations: one 64-antenna co-located array and one distributed deployment with two 32-antenna arrays.

The following video showcases the measurement setup: