Category Archives: News

Even Higher Spectral Efficiency in Massive MIMO Trials

There are basically two approaches to achieve high data rates in 5G: One can make use of huge bandwidths in mmWave bands or use Massive MIMO to spatially multiplex many users in the conventional sub-6 GHz bands.

As I wrote back in June, I am more impressed by the latter approach since it is more spectrally efficient and requires more technically advanced signal processing. I was comparing the 4.7 Gbps that Nokia had demonstrated over an 840 MHz mmWave band with the 3.7 Gbps that Huawei had demonstrated over 100 MHz of the sub-6 GHz spectrum. The former example achieves a spectral efficiency of 5.6 bps/Hz while the latter achieves 37 bps/Hz.

T-Mobile and Ericsson recently described a new field trial with even more impressive results. They made use of 100 MHz in the 2.5 GHz band and achieved 5.6 Gbps, corresponding to a spectral efficiency of 56 bps/Hz; an order-of-magnitude more than one can expect in mmWave bands!

The press release describes that the high data rate was achieved using a 64-antenna base station, similar to the product that I described earlier. Eight smartphones were served by spatially multiplexing and each received two parallel data streams (so-called layers). Hence, each user device obtained around 700 Mbps. On average, each of the 16 layers had a spectral efficiency of 3.5 bps/Hz, thus 16-QAM was probably utilized in the transmission.

I think these numbers are representative of what 5G can deliver in good coverage conditions. Hopefully, Massive MIMO based 5G networks will soon be commercially available in your country as well.

Machine Learning for Massive MIMO Communications

Since the pandemic made it hard to travel over the world, several open online seminar series have appeared with focus on different research topics. The idea seems to be to give researchers a platform to attend talks by international experts and enable open discussions.

There is a “One World Signal Processing Seminar Series” series, which has partially considered topics on multi-antenna communications. I want to highlight one such seminar. Professor Wei Yu (University of Toronto) is talking about Machine Learning for Massive MIMO Communications. The video contains a 45 minute long presentation plus another 30 minutes where questions are being answered.

There are also several other seminars in the series. For example, I gave a talk myself on “A programmable wireless world with reconfigurable intelligent surfaces“. On August 24, Prof. David Gesbert will talk about “Learning to team play”.

Chasing Data Rate Records

5G networks are supposed to be fast, to provide higher data rates than ever before. While indoor experiments have demonstrated huge data rates in the past, this has been the year where the vendors are competing in setting new data rate records in real deployments.

Nokia achieved 4.7 Gbps in an unnamed carrier’s cellular network in the USA in May 2020. This was achieved by dual connectivity where a user device simultaneously used 800 MHz of mmWave spectrum in 5G and 40 MHz of 4G spectrum.

The data rate with the Nokia equipment was higher than the 4.3 Gbps that Ericsson demonstrated in February 2020, but they “only” used 800 MHz of mmWave spectrum. While there are no details on how the 4.7 Gbps was divided between the mmWave and LTE bands, it is likely that Ericsson and Nokia achieved roughly the same data rate over the mmWave bands. The main new aspect was rather the dual connectivity between 4G and 5G.

The high data rates in these experiments are enabled by the abundant spectrum, while the spectral efficiency is only 5.4 bps/Hz. This can be achieved by 64-QAM modulation and high-rate channel coding, a combination of modulation and coding that was available already in LTE. From a technology standpoint, I am more impressed by reports of 3.7 Gbps being achieved over only 100 MHz of bandwidth, because then the spectral efficiency is 37 bps/Hz. That can be achieved in conventional sub-6 GHz bands which have better coverage and, thus, a more consistent 5G service quality.

How “Massive” are the Current Massive MIMO Base Stations?

I have written earlier that the Massive MIMO base stations that have been deployed by Sprint, and other operators, are very capable from a hardware perspective. They are equipped with 64 fully digital antennas, have a rather compact form factor, and can handle wide bandwidths in the 2-3 GHz bands. These facts are supported by documentation that can be accessed in the FCC databases.

However, we can only guess what is going on under the hood – what kind of signal processing algorithms have been implemented and how they perform compared to ideal cases described in the academic literature. Erik G. Larsson recently wrote about how Nokia improved its base station equipment via a software upgrade. Are the latest base stations now as “Massive MIMO”-like as they can become?

My guess is that there is still room for substantial improvements. The following joint video from Sprint and Nokia explains how their latest base stations are running 4G and 5G simultaneously on the same 64-antenna base station and are able to multiplex 16 layers.

This is the highest number of multiuser MIMO layers achieved in the US” according to the speaker. But if you listen carefully, they are actually sending 8 layers on 4G and 8 layers 5G. That doesn’t sum up to 16 layers! The things called layers in 3GPP are signals that are transmitted simultaneously in the same band, but with different spatial directivity. In every part of the spectrum, there are only 8 spatially multiplexed layers in the setup considered in the video.

It is indeed impressive that Sprint can simultaneously deliver around 670 Mbit/s per user to 4 users in the cell, according to the video. However, the spectral efficiency per cell is “only” 22.5 bit/s/Hz, which can be compared to the 33 bit/s/Hz that was achieved in real-world trials by Optus and Huawei in 2017.

Both numbers are far from the world record in spectral efficiency of 145.6 bit/s/Hz that was achieved in a lab environment in Bristol, in a collaboration between the universities in Bristol and Lund. Although we cannot expect to reach those numbers in real-world urban deployments, I believe we can reach higher numbers by building 64-antenna arrays with a different form factor: long linear arrays instead of compact square panels. Since most users are separable in terms of having different azimuth angles to the base station, it will be easier to separate them by sending “narrower” beams in the horizontal domain.

Record 5G capacity via software upgrade!

In the news: Nokia delivers record 5G capacity gains through a software upgrade.   No surprise!  We expected, years ago, this would happen.

What does this software upgrade consist of?  I can only speculate.  It is, in all likelihood, more than the usual (and endless) operating system bugfixes we habitually think of as “software upgrades”.   Could it be even something that goes to the core of what massive MIMO is?  Replacing eigen-beamforming with true reciprocity-based beamforming?! Who knows. Replacing maximum-ratio processing with zero-forcing combining?!  Or even more mind-boggling, implementing more sophisticated processing of the sort that has been stuffing the academic journals in the last years? We don’t know!  But it will certainly be interesting to find out at some point, and it seems safe to assume that this race will continue.  

A lot of improvement could be achieved over the baseline canonical massive MIMO processing. One could, for example, exploit fading correlation, develop improved power control algorithms or implement algorithms that learn the propagation environment, autonomously adapt, and predict the channels.  

It might seem that research already squeezed every drop out of the physical layer, but I do not think so.  Huge gains likely remain to be harvested when resources are tight, and especially we are limited by coherence: high carriers means short coherence, and high mobility might mean almost no coherence at all.  When the system is starved of coherence, then even winning a couple of samples on the pilot channel means a lot.  Room for new elegant theory in “closed form”?  Good question. Could sound heartbreaking, but maybe we have to give up on that.  Room for useful algorithms and innovation? Certainly yes.  A lot.  The race will continue.

Multiple Antenna Technologies for Beyond 5G

I am one of the guest editors of the JSAC special issue on “Multiple Antenna Technologies for Beyond 5G” which had its submission deadline on October 1. We received 133 submissions that span emerging topics such as Cell-free Massive MIMO, intelligent reflective surfaces, terahertz communications, new hardware architectures (e.g., lens arrays), and index modulation. It will take a lot of hard work to review all these submissions, but I am convinced that the selected papers will be of high quality and present a range of interesting concepts that can be utilized in beyond 5G systems.

In addition to the technical papers, the guest editors have also written a survey paper that has the same name as the special issue. A draft of it is available on arXiv. This paper describes the state-of-the-art and open problems related to several of the topics described above.

The Role of Massive MIMO in 5G Deployments

The support for mmWave spectrum is a key feature of 5G, but mmWave communication is also known to be inherently unreliable due to the blockage and penetration losses, as can be demonstrated in this simple way:

This is why the sub-6 GHz bands will continue to be the backbone of the future 5G networks, just as in previous cellular generations, while mmWave bands will define the best-case performance. A clear example of this is the 5G deployment strategy of the US operator Sprint, which I heard about in a keynote by John Saw, CTO at Sprint, at the Brooklyn 5G Summit. (Here is a video of the keynote.)

Sprint will use spectrum in the 600 MHz band to achieve wide-spread 5G coverage. This low frequency will enable spatial multiplexing of many users if Massive MIMO is used, but the data rates per user will be rather limited since only a few tens of MHz of bandwidth is available. Nevertheless, this band will define the guaranteed service level of the 5G network.

In addition, Sprint has 120 MHz of TDD spectrum in the 2.5 GHz band and are deploying 64-antenna Massive MIMO base stations in many major cities; there will be more than 1000 sites in 2019. These can both be used to simultaneously do spatial multiplexing of many users and to improve the per-user data rates thanks to the beamforming gains. John Saw pointed out that the word “massive” in Massive MIMO sounds scary, but the actual arrays are neat and compact in the 2.5 GHz band. He also explained that this frequency band supports high mobility, which is very challenging at mmWave frequencies. The mobility support is demonstrated in the following video:

The initial tests of Sprint’s Massive MIMO systems pretty much confirm the theoretical predictions. In Plano, Texas, a 3.4x gain in downlink sum rates and 8.9x gain in uplink sum rates were observed when comparing 64-antenna and 8-antenna panels. These gains come from a combination of spatial multiplexing and beamforming; this is particularly evident in the uplink where the rates increased faster than the number of antennas. Recent measurements at the Reston Town Center, Virginia, showed similar gains: between 4x and 20x improvements at different locations (see the image below).

Tom Marzetta, the originator of Massive MIMO, attended the keynote and gave me the following comment: “It is gratifying to hear the CTO of Sprint confirm, through actual commercial deployments, what the advocates of Massive MIMO have said for so long.”

Screenshot from the presentation at the Brooklyn 5G Summit, showing measured data rates before and after Massive MIMO was turned on.

Interestingly, Sprint noticed that their customers immediately used more data when Massive MIMO was turned on, and there were more simultaneous users in the network. This demonstrates the fact that whenever you create a more capable cellular network, the users will be encouraged to use more data and new use cases will gradually appear. This is why we need to continue looking for ways to improve the spectral efficiency beyond 5G and Massive MIMO.