Category Archives: News

Field Tests of FDD Massive MIMO

Frequency-division duplex (FDD) operation of Massive MIMO in LTE is the topic of two press releases from January 2017. The first press release describes a joint field test carried out by ZTE and China Telecom. It claims three-fold improvements in per-cell spectral efficiency using standard LTE devices, but no further details are given. The second press release describes a field verification carried out by Huawei and China Unicom. The average data rate was 87 Mbit/s per user over a 20 MHz channel and was achieved using commercial LTE devices. This corresponds to a spectral efficiency of 4.36 bit/s/Hz per user. A sum rate of 697 Mbit/s is also mentioned, from which one could guess that eight users were multiplexed (87•8=696).

Image source: Huawei

There are no specific details of the experimental setup or implementation in any of these press releases, so we cannot tell how well the systems perform compared to a baseline TDD Massive MIMO setup. Maybe this is just a rebranding of the FDD multiuser MIMO functionality in LTE, evolved with a few extra antenna ports. It is nonetheless exciting to see that several major telecom companies want to associate themselves with the Massive MIMO technology and hopefully it will result in something revolutionary in the years to come.

Efficient FDD implementation of multiuser MIMO is a longstanding challenge. The reason is the difficulty in estimating channels and feeding back accurate channel state information (CSI) in a resource-efficient manner. Many researchers have proposed methods to exploit channel parameterizations, such as angles and spatial correlation, to simplify the CSI acquisition. This might be sufficient to achieve an array gain, but the ability to also mitigate interuser interference is less certain and remains to be demonstrated experimentally. Since 85% of the LTE networks use FDD, we have previously claimed that making Massive MIMO work well in FDD is critical for the practical success and adoption of the technology.

We hope to see more field trials of Massive MIMO in FDD, along with details of the measurement setups and evaluations of which channel acquisition schemes that are suitable in practice. Will FDD Massive MIMO be exclusive for static users, whose channels are easily estimated, or can anyone benefit from it in 5G?

Update: Blue Danube Systems has released a press release that is also describing trials of FDD Massive MIMO as well. Many companies apparently want to be “first” with this technology for LTE.

Massive MIMO Trials in LTE Networks

Massive MIMO is often mentioned as a key 5G technology, but could it also be exploited in currently standardized LTE networks? The ZTE-Telefónica trials that were initiated in October 2016 shows that this is indeed possible. The press release from late last year describes the first results. For example, the trial showed improvements in network capacity and cell-edge data rates of up to six times, compared to traditional LTE.

The Massive MIMO blog has talked with Javier Lorca Hernando at Telefónica to get further details. The trials were carried out at the Telefónica headquarters in Madrid. A base station with 128 antenna ports was deployed at the rooftop of one of their buildings and the users were located in one floor of the central building, approximately 100 m from the base station. The users basically had cell-edge conditions, due to the metallized glass and multiple metallic constructions surrounding them.

The uplink and downlink data transmissions were carried out in the 2.6 GHz band. Typical Massive MIMO time-division duplex (TDD) operation was considered, where the uplink detection and downlink precoding is based on uplink pilots and channel reciprocity. The existing LTE sounding reference signals (SRSs) were used as uplink pilots. The reciprocity-based precoding was implemented by using LTE’s transmission mode 8 (TM8),  which supports any type of precoding.  Downlink pilots were used for link adaptation and demodulation purposes.

It is great to see that Massive MIMO can be also implemented in LTE systems. In this trial, the users were static and relatively few, but it will be exciting to see if the existing LTE reference signals will also enable Massive MIMO communications for a multitude of mobile users!

Update: ZTE has carried out similar experiments in cooperation with Smartfren in Indonesia. Additional field trials are mentioned in the comments to this post.

Which Technology Can Give Greater Value?

The IEEE GLOBECOM conference, held in Washington D.C. this week, featured many good presentations and exhibitions. One well-attended event was the industry panel “Millimeter Wave vs. Below 5 GHz Massive MIMO: Which Technology Can Give Greater Value?“, organized by Thomas Marzetta and Robert Heath. They invited one team of Millimeter Wave proponents (Theodore Rappaport, Kei Sakaguchi, Charlie Zhang) and one team of Massive MIMO proponents (Chih-Lin I, Erik G. Larsson, Liesbet Van der Perre) to debate the pros and cons of the two 5G technologies.

img_7332

For millimeter wave, the huge bandwidth was identified as the key benefit. Rappaport predicted that 30 GHz of bandwidth would be available in 5 years time, while other panelists made a more conservative prediction of 15-20 GHz in 10 years time. With such a huge bandwidth, a spectral efficiency of 1 bit/s/Hz is sufficient for an access point to deliver tens of Gbit/s to a single user. The panelists agreed that much work remains on millimeter wave channel modeling and the design of circuits for that can deliver the theoretical performance without huge losses. The lack of robustness towards blockage and similar propagation phenomena is also a major challenge.

For Massive MIMO, the straightforward support of user mobility, multiplexing of many users, and wide-area coverage were mentioned as key benefits. A 10x-20x gain in per-cell spectral efficiency, with performance guarantees for every user, was another major factor. Since these gains come from spatial multiplexing of users, rather than increasing the spectral efficiency per user, a large number of users are required to achieve these gains in practice. With a small number of users, the Massive MIMO gains are modest, so it might not be a technology to deploy everywhere. Another drawback is the limited amount of spectrum in the range below 5 GHz, which limits the peak data rates that can be achieved per user. The technology can deliver tens of Mbit/s, but maybe not any Gbit/s per user.

Although the purpose of the panel was to debate the two 5G candidate technologies, I believe that the panelists agree that these technologies have complementary benefits. Today, you connect to WiFi when it is available and switch to cellular when the WiFi network cannot support you. Similarly, I imagine a future where you will enjoy the great data rates offered by millimeter wave, when you are covered by such an access point. Your device will then switch seamlessly to a Massive MIMO network, operating below 5 GHz, to guarantee ubiquitous connectivity when you are in motion or not covered by any millimeter wave access points.

Macrocell Massive MIMO at 4.5 GHz: Field Trials in Japan

This impressive experiment serves 23 terminals with 64 base station antennas, at 4.5 GHz carrier, with a reported total spectral efficiency in the cell of nearly 80 bps/Hz. Several of the terminals are mobile, though it is not clear how fast.

Merouane Debbah, Vice-President of the Huawei France R&D center, confirms to the Massive MIMO blog that this spectral efficiency was achieved in the downlink, using TDD and exploiting channel reciprocity. This comes as no surprise, as it is not plausible that this performance could be sustained with FDD-style CSI feedback.

Another piece of evidence, that the theoretical predictions of Massive MIMO performance are for real.

Massive MIMO in Mobile Environments

An impressive experiment, recently reported by colleagues at Univ. of Lund and Univ. of Bristol, shows TDD (reciprocity-based) Massive MIMO multiplexing to mobile terminals:

The interesting part starts at 2:48, with the terminals onboard cars. While it has been contested whether Massive MIMO can work in mobility (because of channel aging) this experiment confirms that it does — as predicted by theory for a long time. In fact, at 3.7 GHz carrier and with a slot length of 0.5 ms, the maximum permitted mobility (assuming a two-ray model with Nyquist sampling, and a factor-of-two design margin) is over 140 km/h. So the experiment is probably still not close to the physical limits.