Category Archives: Technical insights

Episode 39: Radio Stripes at Terahertz (With Parisa Aghdam)

We have now released the 39th episode of the podcast Wireless Future. It has the following abstract:

Massive bandwidths are available in the sub-terahertz bands, but the coverage of a cellular network exploiting those frequencies will be spotty. The 6GTandem project tries to circumvent this issue by developing a dual-frequency system architecture that jointly uses the sub-6 GHz and sub-THz bands. In this episode, Erik G. Larsson and Emil Björnson are visited by Dr. Parisa Aghdam, Technical Lead of 6GTandem and Research Manager at Ericsson. The discussion starts with potential use cases, such as extended reality services in stadiums and connected factories. The conversation then focuses on hardware aspects, such as how to build a distributed antenna system using plastic microwave fibers and amplifiers so that sub-THz signals can be transmitted from many different locations. You can read more about the EU-funded project and its partners at https://horizon-6gtandem.eu/

You can watch the video podcast on YouTube:

You can listen to the audio-only podcast at the following places:

The Dark Side of Reconfigurable Intelligent Surfaces

The research community often praises reconfigurable intelligent surfaces (RISs) as a transformative technology. By controlling parts of wireless propagation channels, we can improve the bit rates by increasing the received signal strength, mitigating interference, enhancing channel ranks, etc. The potential benefits RISs can bring to wireless networks are now well documented, and several of them have also been demonstrated experimentally. However, the RIS technology also introduces several practical complications that one must be mindful of. In this blog post, I will give two examples of the dark side of the RIS technology.

Pilot contamination between operators

Suppose a telecom operator deploys an RIS to enhance the performance experienced by its customers. The academic literature is full of algorithms that can be used to that end. Each time the operator changes the RIS configuration, it will affect not only the wireless channels within its licensed frequency band but also the channels in many neighboring bands. The phase-shifting in each RIS element acts as an approximately linear-phase filtering operation, which shifts the phases of reflected signals (proportionally to their carrier frequencies) both in the intended and adjacent bands. Since there is no non-linear distortion, the operator’s wireless signals are maintained in their designated band. Nevertheless, the operator messes with the channel characteristics in neighboring bands every time it reconfigures its RIS. In the best-case scenario, the systems operating in neighboring bands only experience additional fading variations. In the worst-case scenario, they will suffer from substantial performance degradation.

An instance of the latter scenario appears when two telecom operators deploy RISs in the same coverage area. We studied this scenario in a recent paper. 5G networks typically use time-division duplex (TDD) bands, and the operators are time-synchronized, so they switch between uplink and downlink simultaneously. This implies that the considered operators will send pilot sequences in parallel, which is usually fine because they are transmitted in different bands. However, if each operator uses its pilot sequences for RIS reconfiguration that helps its own users, it will also modify the other operator’s channels in undesired ways after the estimation has occurred. This leads to a new kind of pilot contamination effect, which differs from that in Massive MIMO but leads to the same bottlenecks: reduced estimation quality and a performance limit at high signal-to-noise ratios (SNRs). Consequently, if a large-scale deployment of RIS occurs in cellular networks, we will see not only the intended performance improvements but also occasional unexpected degradations. More research is needed to quantify this effect and what can be done to mitigate it.

Malicious RIS

While the pilot contamination caused between telecom operators is an unintentional disturbance, RIS could also be used for intentional “silent” jamming. In a recent paper, we analyze the situation where a hacker takes control of an operator’s RIS and turns it into a malicious RIS. Instead of maximizing the received signal strength at a specific user device, the RIS can be configured to minimize the signal strength. Since this is achieved by causing destructive interference over the air, the user device will perceive this as having poor coverage. Conventional jamming builds on sending a strongly interfering signal to prevent data decoding, and this can be easily detected. By contrast, the silent jamming caused by a malicious RIS is hard to detect since it destroys the channel without introducing new signals. In our paper, we demonstrate how a malicious RIS can avoid detection by only destroying the channel for one user device while other devices are unaffected. We also show that malicious reflection is possible even if the RIS has imperfect channel knowledge.

In summary, there is a dark side to the RIS technology. It can both manifest itself through unintentional tampering with the channels in neighboring frequency bands and through the risk that an RIS is hacked and turned into a malicious RIS that degrades rather than improves communication performance. Careful regulation, standardization, hardware design, and security will be required to overcome these challenges.

How Many Beams Can You Send from a MIMO Array?

I receive many questions from students and researchers on social media, including this blog, YouTube, and ResearchGate. I do my best to answer such questions while commuting to work or having few minutes between meetings. I receive some questions quite frequently, making it worth creating videos where I try to answer them once and for all.

Below, you can find the first video in that series, and it answers the question: How many beams can you send from a MIMO array? As you will notice when watching the video, we obtain a more appropriate question if “can you send” is replaced by “do you want to send”.

If you have remaining doubts or comments after watching it, please feel free to post a comment on YouTube.

Episode 38: Things We Learned at the 6G Symposium

We have now released the 38th episode of the podcast Wireless Future. It has the following abstract:

Many topics are studied within the 6G research community, from hardware design to algorithms, protocols, and services. Erik G. Larsson and Emil Björnson recently attended the ELLIIT 6G Symposium in Lund, Sweden. In this episode, they discuss ten things that they learned from listening to the keynote speeches. The topics span from integrated sensing, positioning, and localization via machine-learning applications in communications to fundamental communication theory, such as circuits for universal channel decoding and jamming protection. The expected 6G spectrum ranges, energy efficiency in base stations, and new use cases for electromagnetic materials are also covered. You can find slides from the symposium here.

Ten things we learned

3:22 Integrated sensing and communication 12:45 Positioning using phase-coherent access points 20:42 Experimental work on positioning from ELLIIT Focus period 24:02 Trained activation functions in machine learning 30:25 Learning to operate a reconfigurable intelligent surface 37:15 Guessing Random Additive Noise Decoding (GRAND) 44:30 Protecting digital beamforming against jamming 53:02 6G frequency spectrum 1:01:50 Energy efficiency in base stations 1:08:47 New use cases for electromagnetic materials

You can watch the video podcast on YouTube:

You can listen to the audio-only podcast at the following places:

The Golden Frequencies

The golden frequencies for wireless access are in the band below 6 GHz. Why are these frequencies so valuable? The reasons, of course, are rooted in the physics. First, the wavelength is short enough that a (numerically) large array has an attractive form factor, enabling spatial multiplexing even from a single antenna panel. At the same time, the wavelength is large enough that a sufficiently large aperture can be obtained with a reasonable number of antennas – which, in turn, directly translates into a favorable link budget and high coverage. Second, below 6 GHz, Doppler is low enough, even at high mobility, that reciprocity-based beamforming based on uplink pilots for channel estimation works without relying on prior assumptions on the propagation environment, let alone on the fading statistics. This directly translates into robustness, simplicity of implementation, and scalability with respect to the number of service antennas. Third, these frequencies are not hindered so much by blockage, and strong multipath components can guarantee connectivity even when there is no line-of-sight, while in contrast, for mmWave a human blocking the line-of-sight path can suffice to break the link. Finally, analog microelectronics for the golden bands is mature, and very energy-efficient.

Distributed MIMO (D-MIMO) with reciprocity-based beamforming is the natural way of best exploiting the golden frequencies. This technology naturally operates in the [geometric] near-field of the “super-array” collectively constituted by all antenna panels together. In fact, the actual antenna deployment hardly matters at all! With reciprocity-based beamforming, the physical shape of the actual beams, and grating lobe phenomena in particular, become irrelevant. If anything, given a set of antennas, it is advantageous to spread them out over as large aperture as possible. The only definite no-no is to place antennas closer than half a wavelength together: such dense packing of antennas is almost never meaningful, as sampling points lambda/2-spaced apart captures essentially all the degrees of freedom of the field; putting the antennas closer results in coupling effects that are usually of more harm than benefit.

REINDEER is the European project that develops and demonstrates D-MIMO for the golden frequencies. What are the most important technical challenges? One is, down-to-earth, to handle the vast amounts of baseband data, and process them in real time. Another is time and phase synchronization of distributed MIMO arrays: antenna panels driven by independent local oscillators must be re-calibrated for joint reciprocity every time the oscillators have drifted apart. Locking the clocks using cabling is possible in principle, but considered very expensive to deploy. A third is initial access, covering space uniformly with system information signals, and waking up sleeping devices. A fourth is energy-efficiency, at all levels in the network. A fifth is the integration of service of energy-neutral devices that communicate via backscattering. D-MIMO naturally offers the infrastructure for that, permitting simultaneous transmission and reception from different panels in a bistatic setup; however, these activities break the TDD flow and must be carefully integrated into the workings of the system.

If sub-6 GHz are gold, then what is silver? Perhaps right above: the 7-15 GHz band, that is intended in 6G to extend the “main capacity” layer. It appears that these bands can still be suitable mobile applications, and that higher carriers (28 GHz, 38 GHz) are appropriate for fixed wireless access mostly. But the sub-6 GHz bands will remain golden and the first choice for the most challenging situations: high mobility, area coverage, and outdoor-to-indoor.

Erik G. Larsson
Liesbet Van der Perre

Episode 37. Wireless Future Panel Discussion (Live Podcast)

We have now released the 37th episode of the podcast Wireless Future. It has the following abstract:

We celebrate the three-year anniversary of the podcast with a live recording from the Wireless Future Symposium that was held in September 2023. A panel of experts answered questions that we received on social media. Liesbet Van der Perre (KU Leuven) discusses the future of wireless Internet-of-Things, Fredrik Tufvesson (Lund University) explains new channel properties at higher frequencies, Jakob Hoydis (NVIDIA) describes differentiable ray-tracing and its connection to machine learning, Deniz Gündüz (Imperial College London) presents his vision for how artificial intelligence will affect future wireless networks, Henk Wymeersch (Chalmers University of Technology) elaborates on the similarities and differences between communication and positioning, and Luca Sanguinetti (University of Pisa) demystifies holographic MIMO and its relation to near-field communications.

You can watch the video podcast on YouTube:

You can listen to the audio-only podcast at the following places:

Episode 36: 6G from an Operator Perspective

We have now released the 36th episode of the podcast Wireless Future. It has the following abstract:

It is easy to get carried away by futuristic 6G visions, but what matters in the end is what technology and services the telecom operators will deploy. In this episode, Erik G. Larsson and Emil Björnson discuss a new white paper from SK Telecom that describes the lessons learned from 5G and how these experiences can be utilized to make 6G more successful. The paper and conversation cover network evolution, commercial use cases, virtualization, artificial intelligence, and frequency spectrum. The latest developments in defining official 6G requirements are also discussed. The white paper can be found here. The following news article about mmWave licenses is mentioned. The IMT-2030 Framework for 6G can be found here.

You can watch the video podcast on YouTube:

You can listen to the audio-only podcast at the following places: