Category Archives: 5G

How Much does Massive MIMO Improve the Spectral Efficiency?

It is often claimed in the academic literature that Massive MIMO can greatly improve the spectral efficiency. What does it mean, qualitatively and quantitatively? This is what I will try to explain.

With spectral efficiency, we usually mean the sum spectral efficiency of the transmissions in a cell of a cellular network. It is measured in bit/s/Hz. If you multiply it with the bandwidth, you will get the cell throughput measured in bit/s. Since the bandwidth is a scarce resource, particularly at the frequencies below 5 GHz that are suitable for network coverage, it is highly desirable to improve the cell throughput by increasing the spectral efficiency rather than increasing the bandwidth.

A great way to improve the spectral efficiency is to simultaneously serve many user terminals in the cell, over the same bandwidth, by means of space division multiple access. This is where Massive MIMO is king. There is no doubt that this technology can improve the spectral efficiency. The question is rather “how much?”

Earlier this year, the joint experimental effort by the universities in Bristol and Lund demonstrated an impressive spectral efficiency of 145.6 bit/s/Hz, over a 20 MHz bandwidth in the 3.5 GHz band. The experiment was carried out in a single-cell indoor environment. Their huge spectral efficiency can be compared with 3 bit/s/Hz, which is the IMT Advanced requirement for 4G. The remarkable Massive MIMO gain was achieved by spatial multiplexing of data signals to 22 users using 256-QAM. The raw spectral efficiency is 176 bit/s/Hz, but 17% was lost for practical reasons. You can read more about this measurement campaign here:

http://www.bristol.ac.uk/news/2016/may/5g-wireless-spectrum-efficiency.html

256-QAM is generally not an option in cellular networks, due to the inter-cell interference and unfavorable cell edge conditions. Numerical simulations can, however, predict the practically achievable spectral efficiency. The figure below shows the uplink spectral efficiency for a base station with 200 antennas that serves a varying number of users. Interference from many tiers of neighboring cells is considered. Zero-forcing detection, pilot-based channel estimation, and power control that gives every user 0 dB SNR are assumed. Different curves are shown for different values of τc, which is the number of symbols per channel coherence interval. The curves have several peaks, since the results are optimized over different pilot reuse factors.

Spectral efficiency
Uplink spectral efficiency in a cellular network with 200 base station antennas.

From this simulation figure we observe that the spectral efficiency grows linearly with the number of users, for the first 30-40 users. For larger user numbers, the spectral efficiency saturates due to interference and limited channel coherence. The top value of each curve is in the range from 60 to 110 bit/s/Hz, which are remarkable improvements over the 3 bit/s/Hz of IMT Advanced.

In conclusion, 20x-40x improvements in spectral efficiency over IMT Advanced are what to expect from Massive MIMO.