Category Archives: Technical insights

Challenges on the Path to Deployment

Marina Bay Sands Expo and Convention Centre

I attended GLOBECOM in Singapore earlier this week. Since more and more preprints are posted online before conferences, one of the unique features of conferences is to meet other researchers and attend the invited talks and interactive panel discussions. This year I attended the panel “Massive MIMO – Challenges on the Path to Deployment”, which was organized by Ian Wong (National Instruments). The panelists were Amitava Ghosh (Nokia), Erik G. Larsson (Linköping University), Ali Yazdan (Facebook), Raghu Rao (Xilinx), and Shugong Xu (Shanghai University).

No common definition

The first discussion item was the definition of Massive MIMO. While everyone agreed that the main characteristic is that the number of controllable antenna elements is much larger than the number of spatially multiplexed users, the panelists put forward different additional requirements. The industry prefers to call everything with at least 32 antennas for Massive MIMO, irrespective of whether the beamforming is constructed from codebook-based feedback, grid-of-beams, or by exploiting uplink pilots and TDD reciprocity. This demonstrates that Massive MIMO is becoming a marketing term, rather than a well-defined technology. In contrast, academic researchers often have more restrictive definitions; Larsson suggested to specifically include the TDD reciprocity approach in the definition. This is because it is the robust and overhead-efficient way to acquire channel state information (CSI), particularly for non-line-of-sight users; see Myth 3 in our magazine paper. This narrow definition clearly rules out FDD operation, as pointed out by a member of the audience. Personally, I think that any multi-user MIMO implementation that provides performance similar to the TDD-reciprocity-based approach deserves the Massive MIMO branding, but we should not let marketing people use the name for any implementation just because it has many antennas.

Important use cases

The primary use cases for Massive MIMO in sub-6 GHz bands are to improve coverage and spectral efficiency, according to the panel. Great improvements in spectral efficiency have been demonstrated by prototyping, but the panelist agreed that these should be seen as upper bounds. We should not expect to see more than 4x improvements over LTE in the first deployments, according to Ghosh. Larger gains are expected in later releases, but there will continue to be a substantial gap between the average spectral efficiency observed in real cellular networks and the peak spectral efficiency demonstrated by prototypes. Since Massive MIMO achieves its main spectral efficiency gains by multiplexing of users, we might not need a full-blown Massive MIMO implementation today, when there are only one or two simultaneously active users in most cells. However, the networks need to evolve over time as the number of active users per cell grows.

In mmWave bands, the panel agreed that Massive MIMO is mainly for extending coverage. The first large-scale deployments of Massive MIMO will likely aim at delivering fixed wireless broadband access and this must be done in the mmWave bands; there is too little bandwidth in sub-6 GHz bands to deliver data rates that can compete with wired DSL technology.

Initial cost considerations

The deployment cost is a key factor that will limit the first generations of Massive MIMO networks. Despite all the theoretic research that has demonstrated that each antenna branch can be built using low-resolution hardware, when there are many antennas, one should not forget the higher out-of-band radiation that it can lead to. We need to comply with the spectral emission masks – spectrum is incredibly expensive so a licensee cannot accept interference from adjacent bands. For this reason, several panelists from the industry expressed the view that we need to use similar hardware components in Massive MIMO as in contemporary base stations and, therefore, the hardware cost grows linearly with the number of antennas. On the other hand, Larsson pointed out that the futuristic devices that you could see in James Bond movies 10 years ago can now be bought for $100 in any electronic store; hence, when the technology evolves and the economy of scale kicks in, the cost per antenna should not be more than in a smartphone.

A related debate is the one between analog and digital beamforming. Several panelists said that analog and hybrid approaches will be used to cut cost in the first deployments. To rely on analog technology is somewhat weird in an age when everything is becoming digital, but Yazdan pointed out that it is only a temporary solution. The long-term vision is to do fully digital beamforming, even in mmWave bands.

Another implementation challenge that was discussed is the acquisition of CSI for mobile users. This is often brought up as a showstopper since hybrid beamforming methods have such difficulties – it is like looking at a running person in a binocular and trying to follow the movement. This is a challenging issue for any radio technology, but if you rely on uplink pilots for CSI acquisition, it will not be harder than in a system of today. This has also been demonstrated by measurements.

Open problems

The panel was asked to describe the most important open problems in the Massive MIMO area, from a deployment perspective. One obvious issue, which we called the “grand question” in a previous paper, is to provide better support for Massive MIMO in FDD.

The control plane and MAC layer deserve more attention, according to Larsson. Basic functionalities such as ACK/NACK feedback is often ignored by academia, but incredibly important in practice.

The design of “cell-free” densely distributed Massive MIMO systems also deserve further attention. Connecting all existing antennas together to perform joint transmission seems to be the ultimate approach to wireless networks. Although there is no practical implementation yet, Yazdan stressed that deploying such networks might actually be more practical than it seems, given the growing interest in C-RAN technology.

10 years from now

I asked the panel what will be the status of Massive MIMO in 10 years from now. Rao predicted that we will have Massive MIMO everywhere, just as all access point supports small-scale MIMO today. Yazdan believed that the different radio technology (e.g., WiFi, LTE, NR) will converge into one interconnected system, which also allows operators to share hardware. Larsson thinks that over the next decade many more people will have understood the fundamental benefits of utilizing TDD and channel reciprocity, which will have a profound impact on the regulations and spectrum allocation.

Ten Questions and Answers About Massive MIMO

After the IEEE ComSoc Webinar that I gave this month, there was a 15 minute online Q/A session.

Unfortunately, there was not enough time for me to answer all the questions that I received, so I had to answer many of them afterwards. I have gathered ten questions and my answers below. I can also announce that I will give another Massive MIMO webinar in January 2018 and it will also be followed by a Q/A session.

1. What are the differences between 4G and 5G that will affect how Massive MIMO can be implemented?

The channel estimation must be implemented in the right way (i.e., exploiting uplink pilots and channel reciprocity) to obtain sufficiently accurate channel state information (CSI) to perform spatial multiplexing of many users, otherwise the inter-user interference will eliminate most of the gains. Accurate CSI  is hard to achieve within the 4G standard, although there are several Massive MIMO field trials for TDD LTE that show promising results. However, if 5G is designed properly, it will support Massive MIMO from scratch, while in 4G it will always be an add-on that must to adhere to the existing air interface.

2. How easy it is to deploy MIMO antennas on the current infrastructure?

Generally speaking, we can reuse the current infrastructure when deploying Massive MIMO, which is why operators show much interest in the technology. You upgrade the radio base stations but keep the same backhaul infrastructure and core network. However, since Massive MIMO supports much higher data rates, some of the backhaul connections might also need to be upgraded to deliver these rates.

3. What are the most suitable channel models for Massive MIMO?

I recommend the channel model that was developed in the MAMMOET project. It is a refinement of the COST 2100 model that takes particular phenomena of having large antenna arrays into account. Check out Deliverable D1.2 from that project.

4. For planar arrays, what is the height to width ratio that gives the highest performance?

You typically need more antennas in the horizontal direction (width) than in the vertical direction (height), because the angular variations between users is larger in the horizontal domain. For example, the array might cover a horizontal sector of 120-180 degrees, while the users’ elevation angles might only differ by a few tens of degrees. This is the reason that 8-antenna LTE base stations use linear arrays in the horizontal direction.

There is no optimal answer to the question. It depends on the deployment scenario. If you have high-rise buildings, users at different floors can have rather different elevation angles (it can differ up to 90 degrees) and you can benefit more from having many antennas in the vertical direction. If all users have almost the same elevation angle, it is preferable to have many antennas in the horizontal direction. These things are further discussed in Sections 7.3 and 7.4 in my new book.

5. What are the difficulties we face in deploying Massive MIMO in FDD systems?

The difficulty is to acquire channel state information at the base station for the frequency band used in the downlink, since it is very resource-demanding to send downlink pilots from a large array; particularly, if you want to spatially multiplex many users. This is an important but challenging problem that researchers have been working on since the 1990s. You can read more about it in Myth 3 and the grand question in the paper Massive MIMO: ten myths and one grand question.

6. Do you believe that there is a value in coordinated resource allocation schemes for Massive MIMO?

Yes, but the resource allocation in Massive MIMO is different from conventional systems. Scheduling might not be so important, since you can multiplex many users spatially, but pilot assignment and power allocation are important aspects that must be addressed. I refer to these things as spatial resource allocation. You can read more about this in Sections 7.1 and 7.2 in my new book, but as you can see from those sections, there are many open problems to be solved.

7. What is channel hardening and what implications does it have on the frequency allocation (in OFDMA networks, for example)?

Channel hardening means that the effective channel after beamforming is almost constant so that the communication link behaves as if there is no small-scale fading. A consequence is that all frequency subcarriers provide almost the same channel quality to a user. Regarding channel assignment, since you can multiplex many tens of users spatially in Massive MIMO, you can assign the entire bandwidth (all subcarriers) to every user; there is no need to use OFDMA to allocate orthogonal frequency resources to the users.

8. Is it practical to estimate the channel for each subcarrier in an OFDM system?

To limit the pilot overhead, you typically place pilots only on a small subset of the subcarriers. The distance between the pilots in the frequency domain can be selected based on how frequency-selective the channels are; if a user has L strong channel taps, it is sufficient to send pilots on L subcarriers, even if you many more subcarriers than that. Based on the received pilot signals, one can either estimate the channels on every subcarrier or estimate the channels on some of them and interpolate to get estimates on the remaining subcarriers.

9. How sensitive are the Massive MIMO spectral efficiency gains to TDD frame synchronization?

If you consider an OFDM system, then timing synchronization mismatches that are smaller than the cyclic prefix can basically be ignored. This is the case in TDD LTE systems and will not change when considering Massive MIMO systems that are implemented using OFDM. However, the synchronization across cells will not be perfect. The implications are investigated in a recent paper.

10. How does the higher computational complexity and delay in Massive MIMO processing affect the system performance?

I used to think that the computational complexity would be a bottleneck, but it turns out that it is not a big deal since all of the operations are standard (i.e., matrix multiplications and matrix inversions). For example, the circuit that was developed at Lund University shows that MIMO detection and precoding for a 20 MHz channel can be implemented very efficiently and only consumes a few mW.

Upcoming Massive MIMO Webinars

IEEE ComSoc is continuing to deliver webinars on 5G topics and Massive MIMO is a key part of several of them. The format is a 40 minute presentation followed by a 20 minuter Q/A session. Hence, if you attend the webinars “live”, you have the opportunity to ask questions to the presenters. Otherwise, you can also watch each webinar afterwards. For example, 5G Massive MIMO: Achieving Spectrum Efficiency, which was given in August by Liesbet Van der Perre (KU Leuven), can still be watched.

In November, the upcoming Massive MIMO webinars are:

Massive MIMO for 5G: How Big Can it Get? by Emil Björnson (Linköping University), Thursday, 9 November 2017, 3:00 PM EST, 12:00 PM PST, 20:00 GMT.

Real-time Prototyping of Massive MIMO: From Theory to Reality by Douglas Kim (NI) and Fredrik Tufvesson (Lund University), Wednesday, 15 November 2017, 12:00 PM EST, 9:00 AM PST, 17:00 GMT.

Superimposed Pilots?

The concept of superimposed pilots is (at least 15 years) old, but clever and intriguing. The idea is to add pilot and data samples together, instead of separating them in time and/or frequency, before modulating with waveforms. More recently, the authors of this paper argued that in massive MIMO, based on certain simulations supported by asymptotic analysis, superimposed pilots provide superior performance and that there are strong reasons for superimposed pilots to make their way to practical use.

Until recently, a more rigorous analysis was unavailable. Some weeks ago the authors of this paper argued, that all things considered, the use of superimposed pilots does not offer any appreciable gains for practically interesting use cases. The analysis was based on a capacity-bounding approach for finite numbers of antennas and finite channel coherence, but it assumed the most basic form of signal processing for detection and decoding.

There still remains some hope of seeing improvements, by implementing more advanced signal processing, like zero-forcing, multicell MMSE decoding, or iterative decoding algorithms, perhaps involving “turbo” information exchange between the demodulator, channel estimation, and detector. It will be interesting to follow future work by these two groups of authors to understand how large improvements (if any) superimposed pilots eventually can give.

There are, at least, two general lessons to learn here. First, that performance predictions based on asymptotics can be misleading in practically relevant cases. (I have discussed this issue before.) The best way to perform analysis is to use rigorous capacity lower bounds, or possibly, in isolated cases of interest, link-level simulations with channel coding (for which, as it turns out, capacity bounds are a very good proxy). Second, more concretely, that while it may be tempting, to superimpose-squeeze multiple symbols into the same time-frequency-space resource, once all sources of impairments (channel estimation errors, interference) are accurately accounted for, the gains tend to evaporate. (It is for the same reason that NOMA offers no substantial gains in MIMO systems – a topic that I may return to at a later time.)

Six Differences Between MU-MIMO and Massive MIMO

Multi-user MIMO (MU-MIMO) is not a new technology, but the basic concept of using multi-antenna base stations (BSs) to serve a multitude of users has been around since the late 1980s.

An example of how MU-MIMO was illustrated prior to Massive MIMO.

I sometimes get the question “Isn’t Massive MIMO just MU-MIMO with more antennas?” My answer is no, because the key benefit of Massive MIMO over conventional MU-MIMO is not only about the number of antennas. Marzetta’s Massive MIMO concept is the way to deliver the theoretical gains of MU-MIMO under practical circumstances. To achieve this goal, we need to acquire accurate channel state information, which in general can only be done by exploiting uplink pilots and channel reciprocity in TDD mode. Thanks to the channel hardening and favorable propagation phenomena, one can also simplify the system operation in Massive MIMO.

This is how Massive MIMO is often illustrated for line-of-sight operation.

Six key differences between conventional MU-MIMO and Massive MIMO are provided below.

Conventional MU-MIMO Massive MIMO
Relation between number of BS antennas (M) and users (K) MK and both are small (e.g., below 10) K and both can be large (e.g., M=100 and K=20).
Duplexing mode Designed to work with both TDD and FDD operation Designed for TDD operation to exploit channel reciprocity
Channel acquisition Mainly based on codebooks with set of predefined angular beams Based on sending uplink pilots and exploiting channel reciprocity
Link quality after precoding/combining Varies over time and frequency, due to frequency-selective and small-scale fading Almost no variations over time and frequency, thanks to channel hardening
Resource allocation The allocation must change rapidly to account for channel quality variations The allocation can be planned in advance since the channel quality varies slowly
Cell-edge performance Only good if the BSs cooperate Cell-edge SNR increases proportionally to the number of antennas, without causing more inter-cell interference

Footnote: TDD stands for time-division duplex and FDD stands for frequency-division duplex.

What is the Difference Between Beamforming and Precoding?

I’ve got an email with this question last week. There is not one but many possible answers to this question, so I figured that I write a blog post about it.

One answer is that beamforming and precoding are two words for exactly the same thing, namely to use an antenna array to transmit one or multiple spatially directive signals.

Another answer is that beamforming can be divided into two categories: analog and digital beamforming. In the former category, the same signal is fed to each antenna and then analog phase-shifters are used to steer the signal emitted by the array. This is what a phased array would do. In the latter category, different signals are designed for each antenna in the digital domain. This allows for greater flexibility since one can assign different powers and phases to different antennas and also to different parts of the frequency bands (e.g., subcarriers). This makes digital beamforming particularly desirable for spatial multiplexing, where we want to transmit a superposition of signals, each with a separate directivity. It is also beneficial when having a wide bandwidth because with fixed phases the signal will get a different directivity in different parts of the band. The second answer to the question is that precoding is equivalent to digital beamforming. Some people only mean analog beamforming when they say beamforming, while others use the terminology for both categories.

Analog beamforming uses phase-shifters to send the same signal from multiple antennas but with different phases. Digital beamforming designs different signals for each antennas in the digital baseband. Precoding is sometimes said to be equivalent to digital beamforming.

A third answer is that beamforming refers to a single-user transmission with one data stream, such that the transmitted signal consists of one main-lobe and some undesired side-lobes. In contrast, precoding refers to the superposition of multiple beams for spatial multiplexing of several data streams.

A fourth answer is that beamforming refers to the formation of a beam in a particular angular direction, while precoding refers to any type of transmission from an antenna array. This definition essentially limits the use of beamforming to line-of-sight (LoS) communications, because when transmitting to a non-line-of-sight (NLoS) user, the transmitted signal might not have a clear angular directivity. The emitted signal is instead matched to the multipath propagation so that the multipath components that reach the user add constructively.

A fifth answer is that precoding consists of two parts: choosing the directivity (beamforming) and choosing the transmit power (power allocation).

I used to use the word beamforming in its widest meaning (i.e., the first answer), as can be seen in my first book on the topic. However, I have since noticed that some people have a more narrow or specific interpretation of beamforming. Therefore, I nowadays prefer only talking about precoding. In Massive MIMO, I think that precoding is the right word to use since what I advocate is a fully digital implementation, where the phases and powers can be jointly designed to achieve high capacity through spatial multiplexing of many users, in both NLoS and LOS scenarios.