Category Archives: Technical insights

The Common SINR Mistake

We are used to measuring performance in terms of the signal-to-interference-and-noise ratio (SINR), but this is seldom the actual performance metric in communication systems. In practice, we might be interested in a function of the SINR, such as the data rate (a.k.a. spectral efficiency), bit-error-rate, or mean-squared error in the data detection. When the receiver has perfect channel state information (CSI), the aforementioned metrics are all functions of the same SINR expression, where the power of the received signal is divided by the power of the interference plus noise. Details can be found in Examples 1.6-1.8 of the book Optimal Resource Allocation in Coordinated Multi-Cell Systems.

In most cases, the receiver only has imperfect CSI and then it is harder to measure the performance. In fact, it took me years to understand this properly. To explain the complications, consider the uplink of a single-cell Massive MIMO system with K single-antenna users and M antennas at the base station. The received M-dimensional signal is

    $$\mathbf{y} = \sum_{i=1}^{K} \mathbf{h}_{i} x_{i} + \mathbf{n}$$

where $x_{i}$ is the unit-power information signal from user $i$$\mathbf{h}_{i} \in \mathbb{C}^{M}$ is the fading channel from this user, and $\mathbf{n}\in \mathbb{C}^{M}$ is unit-power additive Gaussian noise. In general, the base station will only have access to an imperfect estimate $\hat{\mathbf{h}}_{i} \in \mathbb{C}^{M}$ of $\mathbf{h}_{i}$, for $i=1,\ldots,K.$

Suppose the base station uses  $\hat{\mathbf{h}}_{1},\ldots,\hat{\mathbf{h}}_{K}$ to select a receive combining vector $\mathbf{v}_k\in \mathbb{C}^{M}$ for user $k$. The base station then multiplies it with $\mathbf{y}$ to form a scalar that is supposed to resemble the information signal $x_{k}$:

    $$\mathbf{v}_k^H \mathbf{y} = \underbrace{\mathbf{v}_k^H \mathbf{h}_{k} x_{k}}_\textrm{Desired signal} + \underbrace{\sum_{i=1, i \neq k}^{K} \mathbf{v}_k^H\mathbf{h}_{i} x_{i}}_\textrm{Interference} + \underbrace{\mathbf{v}_k^H \mathbf{w}}_\textrm{Noise}.$$

From this expression, a common mistake is to directly say that the SINR is

    $$\mathrm{SINR}_k^\textrm{wrong} = \frac{| \mathbf{v}_k^H \mathbf{h}_{k}|^2}{ \sum_{i=1, i \neq k}^{K}  | \mathbf{v}_k^H \mathbf{h}_{i}|^2 + \| \mathbf{v}_k \|^2},$$

which is obtained by computing the power of each of the terms (averaged over the signal and noise), and then claim that $\mathbb{E}\{\log_2(1+\mathrm{SINR}_k^\textrm{wrong} )\}$ is an achievable rate (where the expectation is with respect to the random channels). You can find this type of arguments in many papers, without proof of the information-theoretic achievability of this rate value. Clearly, $\mathrm{SINR}_k^\textrm{wrong} $ is an SINR, in the sense that the numerator contains the total signal power and the denominator contains the interference power plus noise power. However, this doesn’t mean that you can plug $\mathrm{SINR}_k^\textrm{wrong} $ into “Shannon’s capacity formula” and get something sensible. This will only yield a correct result when the receiver has perfect CSI.

A basic (but non-conclusive) test of the correctness of a rate expression is to check that the receiver can compute the expression based on its available information (i.e., estimates of random variables and deterministic quantities). Any expression containing $\mathrm{SINR}_k^\textrm{wrong}$ fails this basic test since you need to know the exact channel realizations \mathbf{h}_{1},\ldots,\mathbf{h}_{K} to compute it, although the receiver only has access to the estimates.

What is the right approach?

Remember that the SINR is not important by itself, but we should start from the performance metric of interest and then we might eventually interpret a part of the expression as an effective SINR. In Massive MIMO, we are usually interested in the ergodic capacity. Since the exact capacity is unknown, we look for rigorous lower bounds on the capacity. There are several bounding techniques to choose between, whereof I will describe the two most common ones.

The first lower bound on the uplink capacity can be applied when  the channels are Gaussian distributed and $\hat{\mathbf{h}}_{1}, \ldots, \hat{\mathbf{h}}_{K}$ are the MMSE estimates with the corresponding estimation error covariance matrices $\mathbf{C}_{1},\ldots,\mathbf{C}_{K}$. The ergodic capacity of user $k$ is then lower bounded by

$$R_k^{(1)} = \mathbb{E} \left\{ \log_2 \left(  1 + \frac{| \mathbf{v}_k^H \hat{\mathbf{h}}_{k}|^2}{ \sum_{i=1, i \neq k}^{K}  | \mathbf{v}_k^H \hat{\mathbf{h}}_{i}|^2 + \sum_{i=1}^{K}   \mathbf{v}_k^H \mathbf{C}_{i} \mathbf{v}_k  + \| \mathbf{v}_k \|^2}   \right) \right\}.

Note that this expression can be computed at the receiver using only the available channel estimates (and deterministic quantities). The ratio inside the logarithm can be interpreted as an effective SINR, in the sense that the rate is equivalent to that of a fading channel where the receiver has perfect CSI and an SNR equal to this effective SINR. A key difference from $\mathrm{SINR}_k^\textrm{wrong}$ is that only the part of the desired signal that is received along the estimated channel appears in the numerator of the SINR, while the rest of the desired signal appears as $\mathbf{v}_k^H \mathbf{C}_{k} \mathbf{v}_k$ in the denominator. This is the price to pay for having imperfect CSI at the receiver, according to this capacity bound, which has been used by Hoydis et al. and Ngo et al., among others.

The second lower bound on the uplink capacity is

$$R_k^{(2)} =  \log_2 \left(  1 + \frac{ | \mathbb{E}\{ \mathbf{v}_k^H \mathbf{h}_{k} \} |^2}{ \sum_{i=1}^{K}  \mathbb{E} \{ | \mathbf{v}_k^H \mathbf{h}_{i}|^2 \}  - | \mathbb{E}\{ \mathbf{v}_k^H \mathbf{h}_{k} \} |^2+ \mathbb{E}\{\| \mathbf{v}_k \|^2\} }   \right),

which can be applied for any channel fading distribution. This bound provides a value close to $R_k^{(1)}$ when there is substantial channel hardening in the system, while $R_k^{(2)}$ will greatly underestimate the capacity when $\mathbf{v}_k^H \mathbf{h}_{k}$ varies a lot between channel realizations. The reason is that to obtain this bound, the receiver detects the signal as if it is received over a non-fading channel with gain \mathbb{E}\{ \mathbf{v}_k^H \mathbf{h}_{k} \} (which is deterministic and thus known in theory, and easy to measure in practice), but there are no approximations involved so $R_k^{(2)}$ is always a valid bound.

Since all the terms in $R_k^{(2)} $ are deterministic, the receiver can clearly compute it using its available information. The main merit of $R_k^{(2)}$ is that the expectations in the numerator and denominator can sometimes be computed in closed form; for example, when using maximum-ratio and zero-forcing combining with i.i.d. Rayleigh fading channels or maximum-ratio combining with correlated Rayleigh fading. Two early works that used this bound are by Marzetta and by Jose et al..

The two uplink rate expressions can be proved using capacity bounding techniques that have been floating around in the literature for more than a decade; the main principle for computing capacity bounds for the case when the receiver has imperfect CSI is found in a paper by Medard from 2000. The first concise description of both bounds (including all the necessary conditions for using them) is found in Fundamentals of Massive MIMO. The expressions that are presented above can be found in Section 4 of the new book Massive MIMO Networks. In these two books, you can also find the right ways to compute rigorous lower bounds on the downlink capacity in Massive MIMO.

In conclusion, to avoid mistakes, always start with rigorously computing the performance metric of interest. If you are interested in the ergodic capacity, then you start from one of the canonical capacity bounds in the above-mentioned books and verify that all the required conditions are satisfied. Then you may interpret part of the expression as an SINR.

I Never Thought It Would Happen So Fast

I never thought it would happen so fast. When I started to work on Massive MIMO in 2009, the general view was that fully digital, phase-coherent operation of so many antennas would be infeasible, and that power consumption of digital and analog circuitry would prohibit implementations for the foreseeable future. More seriously, reservations were voiced that reciprocity-based beamforming would not work, or that operation in mobile conditions would be impossible.

These arguments, it turned out, all proved to be wrong. In 2017, Massive MIMO was the main physical-layer technology under standardization for 5G, and it is unlikely that any serious future cellular wireless communications system would not have Massive MIMO as a main technology component.

But Massive MIMO is more than a groundbreaking technology for wireless communications: it is also an elegant and mathematically rigorous approach to teaching wireless communications. In the moderately-large number-of-antennas regime, our closed-form capacity bounds become convenient proxies for the link performance achievable with practical coding and modulation.

These expressions take into account the effects of all significant physical phenomena: small-scale and large-scale fading, intra- and inter-cell interference, channel estimation errors, pilot reuse (also known as pilot contamination) and power control. A comprehensive analytical understanding of these phenomena simply has not been possible before, as the corresponding information theory has too complicated for any practical use.

The intended audiences of Fundamentals of Massive MIMO are engineers and students. I anticipate that as graduate courses on the topic become commonplace, our extensive problem set (with solutions) available online will serve as a useful resource to instructors. While other books and monographs will likely appear down the road, focusing on trendier and more recent research, Fundamentals of Massive MIMO distills the theory and facts that will prevail for the foreseeable future. This, I hope, will become its most lasting impact.

To read the preface of Fundamentals of Massive MIMO, click here. You can also purchase the book here.

Achieving Spectral Efficiency, Link Reliability, and Low-Power Operation

On January 17, I will give a 1-hour webinar in the IEEE 5G Webinar Series. I was asked to talk about “Massive MIMO for 5G below 6 GHz” since there has been a lot of focus on mmWave frequencies in the 5G discussions, although the primary band for 5G seems to be in the range 3.4-3.8 GHz, according to Ericsson.

The full title of my webinar is Massive MIMO for 5G below 6 GHz: Achieving Spectral Efficiency, Link Reliability, and Low-Power Operation. I will cover the basics of Massive MIMO and explain how the technology is not only great for enhancing the broadband access, but also for delivering the link reliability and low-power operation required by the internet of things. I have made sure that the overlap with my previous webinar is small.

If you watch the webinar live, you will have the chance to ask questions. Otherwise, you can view the recording of the webinar afterward. All the webinars in the IEEE 5G Webinar Series are available for anyone to view.

As a final note, I wrote a guest blog post at IEEE ComSoc Technology News in late December. It follows up and my previous blog post about GLOBECOM and is called: The Birth of 5G: What to do next?

 

Massive MIMO, Drone Swarms, and Some Cool Stuff

Recently, there has been a hype on the use of drones (also called unmanned aerial vehicles (UAVs)) for civilian and military applications. Especially, in the coming decades, lightweight miniature drones are expected to play a major role in the society. Nowadays, small drones are available in toy shops so that an individual could buy it for personal uses such as aerial videography. However, due to security reasons, the personal use of drones is limited to low altitudes (up to 120 m in most countries) and visible line-of-sight. On the other hand, it is most likely that, in many countries, government agencies and commercial firms will be allowed to use drones for a variety of services (See: link 1 and link 2.)

There are many foreseen applications that involve a large number of drones in a limited area such as disaster management, traffic monitoring, crowd management, and crop monitoring. The major communication requirements of most of the drone networks are: several tens of Mbps throughput for streaming high-resolution video, low latency for command and control, highly reliable connectivity in a three-dimensional coverage area, high-mobility support, and simultaneous support for a large number of drones.

The existing wireless systems are unsuitable for communicating with a large number of drones in long-range, high throughput, and high-altitude applications for the following reasons:

  • In many drone communication scenarios, the mobility and traffic patterns of drones are different from the ground users. For example, in aerial surveillance applications, the uplink traffic is much higher than the downlink traffic. Depending on the application, the drones will fly at high speed (10-50 m/s) in a 3D space.
  • The propagation environment in drone communication scenarios will be line-of-sight, even under high mobility.
  • The terrestrial wireless communication networks are optimized for indoor, short range, low mobility (e.g. WiFi), and low altitude (e.g. LTE).
  • In LTE, since the base station antennas are tilted towards the ground, coverage is possible only if the drones fly below 100 m altitude. Apart from coverage, the co-channel interference generated from the neighboring cells will be a major problem in satisfying the high throughput requirements of drones.
  • The MAC layer protocols of the existing systems have to be redesigned according to the drones’ requirements, especially regarding the re-transmission protocols which are related to latency and crucial for drone control.
  • Since the existing wireless systems are connected to the power grids, they might not be available during emergency situations such as earth-quake, massive flooding, and tsunami. Further, in mountain and sea environments, cellular networks are not widely available. This problem can be overcome by deploying flying UAV base stations over the sky.

For the above-mentioned reasons, instead of borrowing from existing wireless technologies, it would be better to develop a new technology, considering the specific drone networks’ requirements and propagation characteristics. As of now, spectrum allocation and standardization efforts for drone communication networks are in the initial stage of development. This is where Massive MIMO can play a key role. The attractive features of Massive MIMO, such as spatial multiplexing and range extension, can be exploited to design flexible and efficient drone communication systems. 5G is based on the concept of network slicing, where the network can be configured differently depending on the use case. Therefore, it is possible to deploy a variation of 5G for drone communications along with appropriately tilted antenna arrays to provide connectivity to the drones flying at high altitudes.

In our recent papers (1 and 2), we illustrated the use for Massive MIMO for drone communications. From these papers, we make the following observations:

  1. The Massive MIMO performance in rich scattering is well understood by the use of ergodic rate bounds that are available in closed form. In line-of-sight, the ergodic rate performance depends on the relative positions of the drones as they move very quickly in 3D space. Interestingly, in case of line-of-sight, the uplink ergodic rate bounds (with MRC receiver) are available in closed form for some specific cases, for example, for the uniformly distributed drone positions within a spherical volume. However, more work is needed to understand the ergodic rate performance with arbitrary drone distributions.
  2. The element-spacing in the ground station array affects the rate performance depending on the distribution of the drones. For a given distribution of the drone positions, ground station array has to be optimized to maximize the ergodic rate.
  3. The probability of outage due to polarization mismatch can be made negligible by appropriately selecting the orientation and polarization of the individual array elements. For example,  circularly polarized cross-dipole antenna elements perform much better when compared to linearly polarized dipoles. (For more details, see this paper.) This means that the use of simple antenna elements, such as cross-dipoles, reduce the concerns of
    antenna pattern designs. Further, the drones can be equipped with a single cross-dipole.
  4. The range extension due to the increased number of antennas can eliminate the need for multi-hop solutions in many drone communication scenarios.
  5. TDD based Massive MIMO can be used for simultaneously supporting several tens of drones both at μ-wave and mm-wave frequencies.
  6. TDD based Massive MIMO can support high-mobility drone communications. In some scenarios (e.g., deterministic trajectories), the channel can be extrapolated without sending pilot symbols.

Below are some examples of use cases of Massive MIMO enabled drone communication systems. The technical details of Massive MIMO based system design can be found in this paper. The Massive MIMO design parameters for some of the use cases can be found in this paper.

Drone racing: In recent years, drone racing, also called “the sport of the future”, is becoming popular around the world. In drone racing, low latency is important for drone control, because even a few tens of milliseconds delay might crash the drone when it moves at the speed of 40-50 m/s.  Interestingly, in our digital world, analog transmission is used for sending videos from racing drones to the pilots. The reason is that, unlike digital transmission, an analog transmission does not incur any processing delay and the overall latency is about only 15 ms. Currently, the 5.8 GHz band (5650 MHz to 5925 MHz) is used for drone racing. The transmitter and receiver use frequency modulation and it requires 40 MHz frequency separation to avoid cross-talks between neighboring channels. As a result, the number of simultaneous drones in a contest is limited to eight.  The video quality is also poor. By using Massive MIMO, several tens of drones can simultaneously participate in a contest and the pilots can enjoy latency-free high-quality video transmission.

Sports streaming: Utilizing drones for sports streaming will change the way we view the sports events. High resolution 4K 360-degree videos taken by multiple drones at different angles can be broadcasted to enable the viewers to have an entirely a new experience. If there are 20 drones covering a sports event, the required sum throughput will be in the order of 10 Gbps. Massive MIMO in the mm-wave frequency band can be used to achieve this high throughput. This can become reality as already there are signs towards the use of drones for covering sports events. For instance, during the 2018 Winter Olympics, drones will be extensively used.

Surveillance (or search and rescue operation) using a swarm of drones and a massive array

 

Surveillance/ Search and Rescue/Disaster management: During natural disasters, a network of drones can be quickly deployed to enable the rescue teams to assess the situation in real-time via high-resolution video streaming. Depending on the area to be covered and desired video quality, the sum throughput requirement will be in the order of Gbps. A Massive MIMO array deployed over a ground vehicle or a large aerial vehicle can be used for serving a swarm of drones.

Aerial survey: A swarm of drones can be used for high-resolution aerial imagery of several kilometers of landscape. There are many uses of aerial survey, including state governance, city planning, 3D cartography, and crop monitoring. Massive MIMO can be an enabler for such high throughput and long-range applications.

Backhaul for flying base stations: During emergency situations and heavy traffic conditions, UAVs could be used as flying base stations to provide wireless connectivity to the cellular users. A Massive MIMO base station can act as a high-capacity backhaul to a large number of flying base stations.

Massive MIMO for space exploration

 

Space exploration: Currently, it takes several hours to receive a photo taken by the Curiosity Mars rover. It is possible to use Massive MIMO to reduce the overall transmission delay. For example, by using a massive antenna array deployed in an orbiter (see the above figure), a swarm of drones and rovers roaming on the surface of another planet can send videos and images to earth. The array can be used to spatially multiplex the uplink transmission from the drones (and possibly the rovers) to the orbiter. Note that the distance between the Mars surface and the orbiter is about 400 km. If the drones fly at an altitude of a few hundred meters and spread out over the region with a few hundred kilometers of radius, the angular resolution of the array is sufficient for spatial multiplexing. The array can be used to transmit the collected images and videos to earth by exploiting the array gain. This might sound like a science fiction, but NASA is already developing a 256 element antenna array for future Mars rovers to enable direct communication with the earth.

Challenges on the Path to Deployment

Marina Bay Sands Expo and Convention Centre

I attended GLOBECOM in Singapore earlier this week. Since more and more preprints are posted online before conferences, one of the unique features of conferences is to meet other researchers and attend the invited talks and interactive panel discussions. This year I attended the panel “Massive MIMO – Challenges on the Path to Deployment”, which was organized by Ian Wong (National Instruments). The panelists were Amitava Ghosh (Nokia), Erik G. Larsson (Linköping University), Ali Yazdan (Facebook), Raghu Rao (Xilinx), and Shugong Xu (Shanghai University).

No common definition

The first discussion item was the definition of Massive MIMO. While everyone agreed that the main characteristic is that the number of controllable antenna elements is much larger than the number of spatially multiplexed users, the panelists put forward different additional requirements. The industry prefers to call everything with at least 32 antennas for Massive MIMO, irrespective of whether the beamforming is constructed from codebook-based feedback, grid-of-beams, or by exploiting uplink pilots and TDD reciprocity. This demonstrates that Massive MIMO is becoming a marketing term, rather than a well-defined technology. In contrast, academic researchers often have more restrictive definitions; Larsson suggested to specifically include the TDD reciprocity approach in the definition. This is because it is the robust and overhead-efficient way to acquire channel state information (CSI), particularly for non-line-of-sight users; see Myth 3 in our magazine paper. This narrow definition clearly rules out FDD operation, as pointed out by a member of the audience. Personally, I think that any multi-user MIMO implementation that provides performance similar to the TDD-reciprocity-based approach deserves the Massive MIMO branding, but we should not let marketing people use the name for any implementation just because it has many antennas.

Important use cases

The primary use cases for Massive MIMO in sub-6 GHz bands are to improve coverage and spectral efficiency, according to the panel. Great improvements in spectral efficiency have been demonstrated by prototyping, but the panelist agreed that these should be seen as upper bounds. We should not expect to see more than 4x improvements over LTE in the first deployments, according to Ghosh. Larger gains are expected in later releases, but there will continue to be a substantial gap between the average spectral efficiency observed in real cellular networks and the peak spectral efficiency demonstrated by prototypes. Since Massive MIMO achieves its main spectral efficiency gains by multiplexing of users, we might not need a full-blown Massive MIMO implementation today, when there are only one or two simultaneously active users in most cells. However, the networks need to evolve over time as the number of active users per cell grows.

In mmWave bands, the panel agreed that Massive MIMO is mainly for extending coverage. The first large-scale deployments of Massive MIMO will likely aim at delivering fixed wireless broadband access and this must be done in the mmWave bands; there is too little bandwidth in sub-6 GHz bands to deliver data rates that can compete with wired DSL technology.

Initial cost considerations

The deployment cost is a key factor that will limit the first generations of Massive MIMO networks. Despite all the theoretic research that has demonstrated that each antenna branch can be built using low-resolution hardware, when there are many antennas, one should not forget the higher out-of-band radiation that it can lead to. We need to comply with the spectral emission masks – spectrum is incredibly expensive so a licensee cannot accept interference from adjacent bands. For this reason, several panelists from the industry expressed the view that we need to use similar hardware components in Massive MIMO as in contemporary base stations and, therefore, the hardware cost grows linearly with the number of antennas. On the other hand, Larsson pointed out that the futuristic devices that you could see in James Bond movies 10 years ago can now be bought for $100 in any electronic store; hence, when the technology evolves and the economy of scale kicks in, the cost per antenna should not be more than in a smartphone.

A related debate is the one between analog and digital beamforming. Several panelists said that analog and hybrid approaches will be used to cut cost in the first deployments. To rely on analog technology is somewhat weird in an age when everything is becoming digital, but Yazdan pointed out that it is only a temporary solution. The long-term vision is to do fully digital beamforming, even in mmWave bands.

Another implementation challenge that was discussed is the acquisition of CSI for mobile users. This is often brought up as a showstopper since hybrid beamforming methods have such difficulties – it is like looking at a running person in a binocular and trying to follow the movement. This is a challenging issue for any radio technology, but if you rely on uplink pilots for CSI acquisition, it will not be harder than in a system of today. This has also been demonstrated by measurements.

Open problems

The panel was asked to describe the most important open problems in the Massive MIMO area, from a deployment perspective. One obvious issue, which we called the “grand question” in a previous paper, is to provide better support for Massive MIMO in FDD.

The control plane and MAC layer deserve more attention, according to Larsson. Basic functionalities such as ACK/NACK feedback is often ignored by academia, but incredibly important in practice.

The design of “cell-free” densely distributed Massive MIMO systems also deserve further attention. Connecting all existing antennas together to perform joint transmission seems to be the ultimate approach to wireless networks. Although there is no practical implementation yet, Yazdan stressed that deploying such networks might actually be more practical than it seems, given the growing interest in C-RAN technology.

10 years from now

I asked the panel what will be the status of Massive MIMO in 10 years from now. Rao predicted that we will have Massive MIMO everywhere, just as all access point supports small-scale MIMO today. Yazdan believed that the different radio technology (e.g., WiFi, LTE, NR) will converge into one interconnected system, which also allows operators to share hardware. Larsson thinks that over the next decade many more people will have understood the fundamental benefits of utilizing TDD and channel reciprocity, which will have a profound impact on the regulations and spectrum allocation.

Ten Questions and Answers About Massive MIMO

After the IEEE ComSoc Webinar that I gave this month, there was a 15 minute online Q/A session.

Unfortunately, there was not enough time for me to answer all the questions that I received, so I had to answer many of them afterwards. I have gathered ten questions and my answers below. I can also announce that I will give another Massive MIMO webinar in January 2018 and it will also be followed by a Q/A session.

1. What are the differences between 4G and 5G that will affect how Massive MIMO can be implemented?

The channel estimation must be implemented in the right way (i.e., exploiting uplink pilots and channel reciprocity) to obtain sufficiently accurate channel state information (CSI) to perform spatial multiplexing of many users, otherwise the inter-user interference will eliminate most of the gains. Accurate CSI  is hard to achieve within the 4G standard, although there are several Massive MIMO field trials for TDD LTE that show promising results. However, if 5G is designed properly, it will support Massive MIMO from scratch, while in 4G it will always be an add-on that must to adhere to the existing air interface.

2. How easy it is to deploy MIMO antennas on the current infrastructure?

Generally speaking, we can reuse the current infrastructure when deploying Massive MIMO, which is why operators show much interest in the technology. You upgrade the radio base stations but keep the same backhaul infrastructure and core network. However, since Massive MIMO supports much higher data rates, some of the backhaul connections might also need to be upgraded to deliver these rates.

3. What are the most suitable channel models for Massive MIMO?

I recommend the channel model that was developed in the MAMMOET project. It is a refinement of the COST 2100 model that takes particular phenomena of having large antenna arrays into account. Check out Deliverable D1.2 from that project.

4. For planar arrays, what is the height to width ratio that gives the highest performance?

You typically need more antennas in the horizontal direction (width) than in the vertical direction (height), because the angular variations between users is larger in the horizontal domain. For example, the array might cover a horizontal sector of 120-180 degrees, while the users’ elevation angles might only differ by a few tens of degrees. This is the reason that 8-antenna LTE base stations use linear arrays in the horizontal direction.

There is no optimal answer to the question. It depends on the deployment scenario. If you have high-rise buildings, users at different floors can have rather different elevation angles (it can differ up to 90 degrees) and you can benefit more from having many antennas in the vertical direction. If all users have almost the same elevation angle, it is preferable to have many antennas in the horizontal direction. These things are further discussed in Sections 7.3 and 7.4 in my new book.

5. What are the difficulties we face in deploying Massive MIMO in FDD systems?

The difficulty is to acquire channel state information at the base station for the frequency band used in the downlink, since it is very resource-demanding to send downlink pilots from a large array; particularly, if you want to spatially multiplex many users. This is an important but challenging problem that researchers have been working on since the 1990s. You can read more about it in Myth 3 and the grand question in the paper Massive MIMO: ten myths and one grand question.

6. Do you believe that there is a value in coordinated resource allocation schemes for Massive MIMO?

Yes, but the resource allocation in Massive MIMO is different from conventional systems. Scheduling might not be so important, since you can multiplex many users spatially, but pilot assignment and power allocation are important aspects that must be addressed. I refer to these things as spatial resource allocation. You can read more about this in Sections 7.1 and 7.2 in my new book, but as you can see from those sections, there are many open problems to be solved.

7. What is channel hardening and what implications does it have on the frequency allocation (in OFDMA networks, for example)?

Channel hardening means that the effective channel after beamforming is almost constant so that the communication link behaves as if there is no small-scale fading. A consequence is that all frequency subcarriers provide almost the same channel quality to a user. Regarding channel assignment, since you can multiplex many tens of users spatially in Massive MIMO, you can assign the entire bandwidth (all subcarriers) to every user; there is no need to use OFDMA to allocate orthogonal frequency resources to the users.

8. Is it practical to estimate the channel for each subcarrier in an OFDM system?

To limit the pilot overhead, you typically place pilots only on a small subset of the subcarriers. The distance between the pilots in the frequency domain can be selected based on how frequency-selective the channels are; if a user has L strong channel taps, it is sufficient to send pilots on L subcarriers, even if you many more subcarriers than that. Based on the received pilot signals, one can either estimate the channels on every subcarrier or estimate the channels on some of them and interpolate to get estimates on the remaining subcarriers.

9. How sensitive are the Massive MIMO spectral efficiency gains to TDD frame synchronization?

If you consider an OFDM system, then timing synchronization mismatches that are smaller than the cyclic prefix can basically be ignored. This is the case in TDD LTE systems and will not change when considering Massive MIMO systems that are implemented using OFDM. However, the synchronization across cells will not be perfect. The implications are investigated in a recent paper.

10. How does the higher computational complexity and delay in Massive MIMO processing affect the system performance?

I used to think that the computational complexity would be a bottleneck, but it turns out that it is not a big deal since all of the operations are standard (i.e., matrix multiplications and matrix inversions). For example, the circuit that was developed at Lund University shows that MIMO detection and precoding for a 20 MHz channel can be implemented very efficiently and only consumes a few mW.