30% Discount on “Massive MIMO Networks” Book

The hardback version of the massive new book Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency (by Björnson, Sanguinetti, Hoydis) is currently available for the special price of $70 (including worldwide shipping). The original price is $99.

This price is available until the end of April when buying the book directly from the publisher through the following link:

https://www.nowpublishers.com/Order/BuyBook?isbn=978-1-68083-985-2

Note: The book’s authors will give a joint tutorial on April 15 at WCNC 2018. A limited number of copies of the book will be available for sale at the conference and if you attend the tutorial, you will receive even better deal on buying the book!

How Distortion from Nonlinear Massive MIMO Transceivers is Radiated Spatially

While the research literature is full of papers that design wireless communication systems under constraints on the maximum transmitted power, in practice, it might be constraints on the equivalent isotropically radiated power (EIRP) or the out-of-band radiation that limit the system operation.

Christopher Mollén recently defended his doctoral thesis entitled High-End Performance with Low-End Hardware: Analysis of Massive MIMO Base Station Transceivers. In the following video, he explains the basics of how the non-linear distortion from Massive MIMO transceivers is radiated in space.

A Basic Way to Quantify the Massive MIMO Gain

Several people have recently asked me for a simple way to quantify the spectral efficiency gains that we can expect from Massive MIMO. In theory, going from 4 to 64 antennas is just a matter of changing a parameter value. However, many practical issues need be solved to bring the technology into reality and the solutions might only be developed if we can convince ourselves that the gains are sufficiently large.

While there is no theoretical upper limit on how spectrally efficient Massive MIMO can become when adding more antennas, we need to set some reasonable first goals.  Currently, many companies are trying to implement analog beamforming in a cost-efficient manner. That will allow for narrow beamforming, but not spatial multiplexing.

By following the methodology in Section 3.3.3 in Fundamentals of Massive MIMO, a simple formula for the downlink spectral efficiency is:

(1)   \begin{equation*}K \cdot \left( 1 - \frac{K}{\tau_c} \right) \cdot \log_2 \left( 1+ \frac{ c_{ \textrm{\tiny CSI}} \cdot M \cdot \frac{\mathrm{SNR}}{K}}{\mathrm{SNR}+ 1} \right)\end{equation*}

where $M$ is the number of base-station antennas, $K$ is the number of spatially multiplexed users, $c_{ \textrm{\tiny CSI}}  \in [0,1]$ is the quality of the channel estimates, and $\tau_c$ is the number of channel uses per channel coherence block. For simplicity, I have assumed the same pathloss for all the users. The variable $\mathrm{SNR}$ is the nominal signal-to-noise ratio (SNR) of a user,  achieved when $M=K=1$. Eq. (1) is a rigorous lower bound on the sum capacity, achieved under the assumptions of maximum ratio precoding, i.i.d. Rayleigh fading channels, and equal power allocation. With better processing schemes, one can achieve substantially higher performance.

To get an even simpler formula, let us approximate (1) as

(2)   \begin{equation*}K \log_2 \left( 1+ \frac{ c_{ \textrm{\tiny CSI}} M}{K} \right)\end{equation*}

by assuming a large channel coherence and negligible noise.

What does the formula tell us?

If we increase $M$ while $K$ is fixed , we will observe a logarithmic improvement in spectral efficiency. This is what analog beamforming can achieve for $K=1$ and, hence, I am a bit concerned that the industry will be disappointed with the gains that they will obtain from such beamforming in 5G.

If we instead increase $M$ and $K$ jointly, so that  $M/K$ stays constant, then the spectral efficiency will grow linearly with the number of users. Note that the same transmit power is divided between the $K$ users, but the power-reduction per user is compensated by increasing the array gain $M$ so that the performance per user remains the same.

The largest gains come from spatial multiplexing

To give some quantitative numbers, consider a baseline system with $M=4$ and $K=1$ that achieves 2 bit/s/Hz. If we increase the number of antennas to $M=64$, the spectral efficiency will become 5.6 bit/s/Hz. This is the gain from beamforming. If we also increase the number of users to $K=16$ users, we will get 32 bit/s/Hz. This is the gain from spatial multiplexing. Clearly, the largest gains come from spatial multiplexing and adding many antennas is a necessary way to facilitate such multiplexing.

This analysis has implicitly assumed full digital beamforming. An analog or hybrid beamforming approach may achieve most of the array gain for $K=1$. However, although hybrid beamforming allows for spatial multiplexing, I believe that the gains will be substantially smaller than with full digital beamforming.

Holographic Beamforming versus Massive MIMO

Last year, the startup company Pivotal Commware secured venture capital (e.g., from Bill Gates) to bring its holographic beamforming technology to commercial products. Despite the word “holographic”, this is not a technology focused on visual-light communications. Instead, the company uses passive electronically steered antennas (PESAs) that are designed for radio-frequencies (RFs) in the micro- and millimeter-wave bands. It is the impedance pattern created in the distribution network over the array that is called a “hologram” and different holograms lead to beamforming in different spatial directions. The company reportedly aims at having commercial products ready this year.

Will the futuristic-sounding holographic beamforming make Massive MIMO obsolete? Not at all, because this is a new implementation architecture, not a new beamforming scheme or spatial multiplexing method. According to the company’s own white paper, the goal is to deliver “a new dynamic beamforming technique using a Software Defined Antenna (SDA) that employs the lowest C-SWaP (Cost, Size, Weight, and Power)“. Simply speaking, it is a way to implement a phased array in a thin, conformable, and affordable way. The PESAs are constructed using high volume commercial off-the-shelf components. Each PESA has a single RF-input and a distribution network that is used to vary the directivity of the beamforming. With a single RF-input, only single-user single-stream beamforming is possible. As explained in Section 1.3 in my recent book, such single-user beamforming can improve the SINR, but the rate only grows logarithmically with the number of antennas. Nevertheless, cost-efficient single-stream beamforming from massive arrays is one of the first issues that the industry tries to solve, in preparation for a full-blown Massive MIMO deployment.

The largest gains from multiple antenna technologies come from spatial multiplexing of many users, using a Massive MIMO topology where the inter-user interference is reduced by making the beams narrower as more users are to be multiplexed. The capacity then grows linearly with the number of users, as also explained in Section 1.3 of my book.

Can holographic beamforming be used to implement Massive MIMO with spatial multiplexing of tens of users? Yes, similar to hybrid beamforming, one could deploy an array of PESAs, where each PESA is used to transmit to one user. Eric J. Black, CTO and founder of Pivotal Commware, refers to this as “sub-aperture based SDMA“. If you want the capability of serving ten users simultaneously, you will need ten PESAs.

If the C-SWaP of holographic beamforming is as low as claimed, the technology might have the key to cost-efficient deployment of Massive MIMO. The thin and conformable form factor also makes me think about the recent concept of Distributed Large Intelligent Surface, where rooms are decorated with small antenna arrays to provide seamless connectivity.

Origin of the “Massive MIMO” Name

“A dear child has many names” is a Swedish saying and it certainly applies to Massive MIMO. It is commonly claimed that the Massive MIMO concept originates from the seminal paper “Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas” by Thomas Marzetta, published in 2010. This is basically correct, except for the fact that the paper only talks about “Multi-user MIMO systems with very large antenna arrays“. Marzetta then published several papers using the large‐scale antenna systems (LSAS) terminology, before switching to calling it Massive MIMO in more recent years. Over the years, various papers have also called it “very large multiuser MIMO” and “large-scale MIMO“. Nowadays, Massive MIMO is used by almost everyone in the research community, and even by marketing people.

If you search at IEEEXplore, the origin of the name remains puzzling. The earliest papers are “Massive MIMO: How many antennas do we need?” by Hoydis/ten Brink/Debbah and “Achieving Large Spectral Efficiency with TDD and Not-so-Many Base-Station Antennas” by Huh/Giuseppe Caire/Papadopoulos/Ramprashad, both from 2011. However, these papers are referring to Marzetta’s seminal paper, which doesn’t call it “Massive MIMO”.

If you instead read the news reports by ZDNet and Silicon from the 2010 Bell Labs Open Days in Paris, the origin of “Massive MIMO” becomes clearer. Marzetta presented his concept and reportedly said that “We haven’t been able to come up with a catchy name”, but told ZDNet that “massive MIMO” and “large-scale MIMO” were two candidates. To the Massive MIMO blog, Marzetta now explains why he initially abandoned these potential names, in favor for LSAS:

When I explained the concept to the Bell Labs Director of Research, he commented that it didn’t sound at all like MIMO to him. He recommended strongly that I think of a name that didn’t contain the acronym “MIMO”, hence, LSAS. Eventually (after everyone else called it Massive MIMO) I abandoned “LSAS” and started to call it “Massive MIMO”.

In conclusion, the Massive MIMO name came originally from Marzetta, who used it when first describing the concept to the public, but the name was popularized by other researchers.

Are Link Simulations Needed Anymore?

One reason for why capacity lower bounds are so useful is that they are accurate proxies for link-level performance with modern coding. But this fact, well known to information and coding theorists, is often contested by practitioners. I will discuss some possible reasons for that here.

The recipe is to compute the capacity bound, and depending on the code blocklength, add a dB or a few, to the required SNR. That gives the link performance prediction. The coding literature is full of empirical results, showing how far from capacity a code of a given block length is for the AWGN channel, and this gap is usually not extremely different for other channel models – although, one should always check this.

But there are three main caveats with this:

  1. First, the capacity bound, or the “SINR” that it often contains, must be information-theoretically correct. A great deal of papers get this wrong. Emil explained in his blog post last week some common errors. The recommended approach is to map the channel onto one of the canonical cases in Figure 2.9 in Fundamentals of Massive MIMO, verify that the technical conditions are satisfied, and use the corresponding formula.
  2. When computing expressions of the type E[log(1+”SINR”)], then the average should be taken over all quantities that are random within the duration of a codeword. Typically, this means averaging over the randomness incurred by the noise, channel estimation errors, and in many cases the small-scale fading. All other parameters must be kept fixed. Typically, user positions, path losses, shadow fading, scheduling and pilot assignments, are fixed, so the expectation is conditional on those. (Yet, the interference statistics may vary substantially, if other users are dropping in and out of the system.) This in turn means that many “drops” have to be generated, where these parameters are drawn at random, and then CDF curves with respect to that second level of randomness needs be computed (numerically).Think of the expectation E[log(1+”SINR”)] as a “link simulation”. Every codeword sees many independent noise realizations, and typically small-scale fading realizations, but the same realization of the user positions. Also, often, neat (and tight) closed-form bounds on E[log(1+”SINR”)] are available.
  3. Care is advised when working with relatively short blocks (less than a few hundred bits) and at rates close to the constrained capacity with the foreseen modulation format. In this case, many of the “standard” capacity bounds become overoptimistic.As a rule of thumb, compare the capacity of an AWGN channel with the constrained capacity of the chosen modulation at the spectral efficiency of interest, and if the gap is small, the capacity bounds will be useful. If not, then reconsider the choice of modulation format! (See also homework problem 1.4.)

How far are the bounds from the actual capacity typically? Nobody knows, but there are good reasons to believe they are extremely close. Here (Figure 1) is a nice example that compares a decoder that uses the measured channel likelihood, instead of assuming a Gaussian (which is implied by the typical bounding techniques). From correspondence with one of the authors: “The dashed and solid lines are the lower bound obtained by Gaussianizing the interference, while the circles are the rate achievable by a decoder exploiting the non-Gaussianity of the interference, painfully computed through days-long Monte-Carlo. (This is not exactly the capacity, because the transmit signals here are Gaussian, so one could deviate from Gaussian signaling and possibly do slightly better — but the difference is imperceptible in all the experiments we’ve done.)”

Concerning Massive MIMO and its capacity bounds, I have met for a long time with arguments that these capacity formulas aren’t useful estimates of actual performance. But in fact, they are: In one simulation study we were less than one dB from the capacity bound by using QPSK and a standard LDPC code (albeit with fairly long blocks). This bound accounts for noise and channel estimation errors. Such examples are in Chapter 1 of Fundamentals of Massive MIMO, and also in the ten-myth paper:

(I wrote the simulation code, and can share it, in case anyone would want to reproduce the graphs.)

So in summary, while capacity bounds are sometimes done wrong; when done right they give pretty good estimates of actual link performance with modern coding.

(With thanks to Angel Lozano for discussions.)

News – commentary – mythbusting