We have now released the 25th episode of the podcast Wireless Future. It has the following abstract:
The statistician George Box famously said that “All models are wrong, but some are useful”. In this episode, Emil Björnson and Erik G. Larsson discuss what models are useful in the context of wireless communications, and for what purposes. The conversation covers modeling of wireless propagation, noise, hardware, and wireless traffic. A key message is that the modeling requirements are different for algorithmic development and for performance evaluation.
You can watch the video podcast on YouTube:
You can listen to the audio-only podcast at the following places:
We have now released the 24nd episode of the podcast Wireless Future, which is a New Year’s special! It has the following abstract:
In this episode, Emil Björnson and Erik G. Larsson answer ten questions from the listeners. The common theme is predictions of how 5G will evolve and which technologies will be important in 6G. The specific questions: Will Moore’s law or Edholm’s law break down first? How important will integrated communication and sensing become? When will private 5G networks start to appear? Will reconfigurable intelligent surfaces be a key enabler of 6G? How can we manage the computational complexity in large-aperture Massive MIMO? Will machine learning be the game-changer in 6G? What is 5G Dynamic Spectrum Sharing? What does the convergence of the Shannon and Maxwell theories imply? What happened to device-to-device communications, is it an upcoming 5G feature? Will full-duplex radios be adopted in the future? If you have a question or idea for a future topic, please share it as a comment to the YouTube version of this episode.
You can watch the video podcast on YouTube:
You can listen to the audio-only podcast at the following places:
We have now released the 23nd episode of the podcast Wireless Future! It has the following abstract:
For each wireless generation, we are using more bandwidth and more antennas. While the primary reason is to increase the communication capacity, it also increases the network’s ability to localize objects and sense changes in the wireless environment. The localization and sensing applications impose entirely different requirements on the desired signal and channel properties than communications. To learn more about this, Emil Björnson and Erik G. Larsson have invited Henk Wymeersch, Professor at Chalmers University of Technology, Sweden. The conversation covers the fundamentals of wireless localization, the historical evolution, and future developments that might involve machine learning, terahertz bands, and reconfigurable intelligent surfaces. Further details can be found in the articles “Collaborative sensor network localization” and “Integration of communication and sensing in 6G”.
You can watch the video podcast on YouTube:
You can listen to the audio-only podcast at the following places:
We have now released the 22nd episode of the podcast Wireless Future! It has the following abstract:
Wireless signals look different whenobserved near to versus far from the transmitter. The notions of near and far also depend on the physical size of the transmitter and receiver, as well as on the wavelength. In this episode, Erik G. Larsson and Emil Björnson discuss these fundamental phenomena and how they can be utilized when designing future communication systems. Concept such as near-field communications, finite-depth beamforming, mutual coupling, and new spatial multiplexing methods such as orbital angular momentum (OAM) are covered. To get more technical details, you can read the paper “A Primer on Near-Field Beamforming for Arrays and Reconfigurable Intelligent Surfaces”.
You can watch the video podcast on YouTube:
You can listen to the audio-only podcast at the following places:
We have now released the 21st episode of the podcast Wireless Future! It has the following abstract:
The latest wireless technologies rely heavily on beamformed data transmissions, implemented using antenna arrays. Since the signals are spatially directed towards the location of the receiver, the transmitter needs to know where to point the beam. Before the wireless link has been established, the transmitter will not have such knowledge. Hence, the geographical coverage of a network is determined by how we can transmit in the absence of beamforming gains. In this episode, Emil Björnson and Erik G. Larsson discuss how to achieve wide-area coverage in wireless networks without beamforming. The conversation covers deployment fundamentals, pathloss characteristics, beam sweeping, spatial diversity, and space-time codes. To learn more, you can read the textbook “Space-Time Block Coding for Wireless Communications”.
You can watch the video podcast on YouTube:
You can listen to the audio-only podcast at the following places:
We have now released the twentieth episode of the podcast Wireless Future! It has the following abstract:
Many objects around us are embedded with sensors and processors to create the Internet of Things (IoT). Wireless connectivity is an essential component for enabling these devices to exchange data without human interaction. To learn more about this development, Erik G. Larsson and Emil Björnson have invited Liesbet Van der Perre, Professor at KU Leuven, Belgium. The conversation covers IoT applications, connectivity solutions, powering, security, sustainability, and e-waste. Further details can be found in the article “The Art of Designing Remote IoT Devices—Technologies and Strategies for a Long Battery Life”.
You can watch the video podcast on YouTube:
You can listen to the audio-only podcast at the following places:
Our podcast is back with a second season! The first episode has number 19 and the following abstract:
How far is the capacity of wireless networks from the limits imposed by nature? To seek an answer to this question, Erik G. Larsson and Emil Björnson invited Thomas Marzetta, Distinguished Industry Professor and originator of Massive MIMO, to this first episode of the second season. The conversation covers the history of that technology and the fundamental aspects that will always dictate the capacity of wireless networks: antenna technology, channel state information, spectral efficiency, bandwidth, spectrum bands, and link budgets. To learn more, you can read the article “Massive MIMO is a Reality – What is Next? Five Promising Research Directions for Antenna Arrays”.
You can watch the video podcast on YouTube:
You can listen to the audio-only podcast at the following places: