All posts by Erik G. Larsson

Upside-Down World

The main track for 5G seems to be FDD for “old bands” below 3 GHz and TDD for “new bands” above 3 GHz (particularly mmWave frequencies). But physics advices us to the opposite:

  • At lower frequencies, larger areas are covered, thus most connections are likely to experience non-line-of-sight propagation. Since channel coherence is large (scales inverse proportionally to the Doppler), there is room for many terminals to transmit uplink pilots from which the base station consequently can obtain CSI. Reciprocity-based beamforming in TDD operation is scalable with respect to the number of base station antennas and delivers great value.
  • As the carrier frequency is increased, the coverage area shrinks; connections are more and more likely to experience line-of-sight propagation. At mmWave frequencies, all connections are either line-of-sight, or consist of a small number of reflected components. Then the channel can be parameterized with only few angular parameters; FDD operation with appropriate flavors of beam tracking may work satisfactorily. Reciprocity certainly would be desirable in this case too, but may not be necessary for the system to function.

Physics has given us the reciprocity principle. It should be exploited in wireless system design.

Pilot Contamination: an Ultimate Limitation?

Many misconceptions float around about the pilot contamination phenomenon. While existent in any multi-cellular system, its effect tends to be particularly pronounced in Massive MIMO due to the presence of coherent interference, that scales proportionally to the coherent beamforming gain. (Chapter 4 in Fundamentals of Massive MIMO gives the details.)

A good system design definitely must not ignore pilot interference. While it is easily removed “on the average” through greater-than-one reuse, the randomness present in wireless communications – especially the shadow fading – will occasionally cause a few terminals to be severely hit by pilot contamination and bring down their performance. This is problematic whenever we are concerned about the provision of uniformly great service in the cell – and that is one of the principal selling arguments for Massive MIMO. Notwithstanding, the impact of pilot contamination can be reduced significantly in practice by appropriate pilot reuse and judicious power control. (Chapters 5-6 in Fundamentals of Massive MIMO gives many details.)

A more fundamental question is whether pilot contamination could be entirely overcome: Does there exist an upper bound on capacity that saturates as the number of antennas, M, is increased indefinitely? Some have speculated that it cannot; much in line with known capacity upper bounds for cellular base station cooperation. While this question may be of more academic than practical interest, it has long been open except for in some trivial special cases: If the channels of two terminals lie in non-overlapping subspaces and Bayesian channel estimation is used, the channel estimates will not be contaminated; capacity grows as log(M) when M increases without bound.

A much deeper result is established in this recent paper: the subspaces of the channel covariances may overlap, yet capacity grows as log(M). Technically, a Rayleigh fading with spatial correlation is assumed, and the correlation matrices for the contaminating terminals must only be linearly independent as M goes to infinity (exact conditions in the paper). In retrospect, this is not unreasonable given the substantial a priori knowledge exploited by the Bayesian channel estimator, but I found it amazing how weak the required conditions on the correlation matrices are. It remains unclear whether the result generalizes to the case of a growing number of interferers: letting the number of antennas go to infinity and then growing the network is not the same thing as taking an “infinite” (scalable) network and increasing the number of antennas. But this paper elegantly and rigorously answers a long-standing question that has been the subject of much debate in the community – and is a recommended read for anyone interested in the fundamental limits of Massive MIMO.

Teaching a Course on Massive MIMO?

Our Cambridge book, Fundamentals of Massive MIMO, ships now from all major retailers.

Problem set: We have developed an extensive set of problems to go with the book. This problem set can be downloaded from the Cambridge resource page, www.cambridge.org/Marzetta, or from this direct link.

The difficulty level of the problem varies widely, rendering the material suitable for instruction at all levels. The problem set is very much a living document and may be extended or improved in the future. Many, though not all, of the problems have been tested on my students when I taught the subject last year. We appreciate, as always, comments or suggestions on the material.

A detailed solution manual is available to instructors who adopt the book.

 


 

List of errata: There is also a list of errata to the book – available via this direct link, or from the Cambridge resource page.

Have no fear of perfection — you’ll never reach it. — Salvador Dali

Extreme Massive MIMO

Suppose extra antennas and RF chains came at no material cost. How large an array could eventually be useful, and would power consumption eventually render “extreme Massive MIMO” infeasible?

I have argued before that in a mobile access environment, no more than a few hundred of antennas per base station will be useful. In an environment without significant mobility, however, the answer is different. In [1, Sec. 6.1], one case study establishes the feasibility of providing (fixed) wireless broadband service to 3000 homes, using a single isolated base station with 3200 antennas (zero-forcing processing and max-min power control). The power consumption of the associated digital signal processing is estimated in [1, homework #6.6] to less than 500 Watt. The service of this many terminals is enabled by the long channel coherence (50 ms in the example).

Is this as massive as MIMO could ever get? Perhaps not. Conceivably, there will be environments with even larger channel coherence. Consider, for example, an outdoor city square with no cars or other traffic – hence no significant mobility. Eventually only measurements can determine the channel coherence, but assuming for the sake of argument 200 ms by 400 kHz, gives room for training of 40,000 terminals (assuming no more than 50% of resources are spent on training). Multiplexing these terminals would require at least 40,000 antennas, which would, at 3 GHz and half wavelength-spacing, occupy an area of 10 x 10 meters (say with a rectangular array for the sake of argument) – easily integrated onto the face of a skyscraper.

  • What gross rate would the base station offer? Assuming, conservatively, 1 bit/s/Hz spectral efficiency (with the usual uniform-service-for-all design), the gross rate in a 25 MHz bandwidth would amount to 1 Tbit/s.
  • How much power would the digital processing require? A back-of-the envelope calculation along the lines of the homework cited above suggests some 15 kW – the equivalent of a few domestic space heaters (I will return to the “energy efficiency” hype later on this blog).
  • How much transmit power is required? The exact value will depend on the coverage area, but to appreciate the order of magnitude, observe that when doubling the number of antennas, the array gain is doubled. If, simultaneously, the number of terminals is doubled, then the total radiated power will be independent of the array size. Hence, transmit power is small compared to the power required for processing.

Is this science fiction or will we be seeing this application in the future? The application is fully feasible, with today’s circuit technology, and does not violate known physical or information theoretic constraints. Machine-to-machine, IoT, or perhaps virtual-reality-type applications may eventually create the desirability, or need, to build extreme Massive MIMO.

[1] T. Marzetta, E. G. Larsson, H. Yang, H. Q. Ngo, Fundamentals of Massive MIMO, Cambridge University Press, 2016.

extreme-mimo

Macrocell Massive MIMO at 4.5 GHz: Field Trials in Japan

This impressive experiment serves 23 terminals with 64 base station antennas, at 4.5 GHz carrier, with a reported total spectral efficiency in the cell of nearly 80 bps/Hz. Several of the terminals are mobile, though it is not clear how fast.

Merouane Debbah, Vice-President of the Huawei France R&D center, confirms to the Massive MIMO blog that this spectral efficiency was achieved in the downlink, using TDD and exploiting channel reciprocity. This comes as no surprise, as it is not plausible that this performance could be sustained with FDD-style CSI feedback.

Another piece of evidence, that the theoretical predictions of Massive MIMO performance are for real.

How Many Antennas are Useful?

One question tends to reoccur: How many antennas can a Massive MIMO base station usefully deploy? Current thinking for macro-cellular is that 100-200 antennas would be suitable. Will we in the future see a lot more, thousands or so?

In that application, I don’t think so. Here is why.

What ultimately limits Massive MIMO is mobility: no more than half of the coherence time-bandwidth product should be occupied by pilot transmission activities. (This is the “half and half rule”.) In macro-cellular at 3 GHz, with highway mobility we may have on the order of 200 kHz x 1 millisecond coherence; that is 200 samples. With pilot reuse of 3 (that practically does away with pilot contamination), we could, then ultimately learn the channel to some 30 simultaneously served terminals – assuming mutually orthogonal pilots. Once the number of base station antennas M reaches beyond twice this number, with some margin – say M=100, the spectral efficiency grows logarithmically with M. That means, even doubling M yields only a 3dB effective SINR increase, that is a single extra bit per second/Hz per terminal. Beyond M=100 or M=200, it may not be worth it. Multiple antennas are only truly useful if they are used to multiplex, and mobility limits the amount of multiplexing we can perform.

So why not quadruple the number of antennas for additional coverage? May not be worth it either. Going from M=200 to M=2000 gives 10 dB – that pays for a 75% range extension, or, alternatively, a tenth of the losses incurred by an energy-saving coated window glass.

In stationary environments, the story is different – a topic that we will be returning to.

How distant into the future?
How distant into the future?

Are 1-bit ADCs Sufficient?

A series of recent papers,

suggest the use of 1-bit ADCs in Massive MIMO base station receivers. Important studies of a concept, that offers great potential for cost saving and simplification of transceiver hardware.

One-bit ADCs
One-bit ADCs quantize the sign of the real and imaginary part of the complex baseband signal.

 

Granted, much lower resolution will be sufficient in Massive MIMO than in conventional MIMO, but will one bit be sufficient? These papers indicate that the price to pay is not insignificant: the number of antennas may have to be doubled in some cases. Also, while the use of symbol-sampled models as in these studies may give correct order-of-magnitude estimates of capacity, much future work appears to remain to understand the effects of digital channelization/prefiltering and sampling rate conversion if 1-bit frontends are going to be used.