Intelligent Reflecting Surfaces: On Use Cases and Path Loss Model

Emerging intelligent reflecting surface (IRS) technology, also known under the names “reconfigurable intelligent surface” and “software-controlled metasurface”, is sometimes marketed as an enabling technology for 6G. How do they work, what are their use cases and how much will they improve wireless access performance at large? The physical principle of an IRS is that the … Continue reading Intelligent Reflecting Surfaces: On Use Cases and Path Loss Model

Dynamic Cooperation Clusters

By deploying many distributed antennas instead of a few multi-antenna base stations, a more uniform communication performance can be achieved over a coverage area. The peak rates might go down but there is a much higher chance of getting a decent rate with 95% probability. This is the main motivation behind Cell-free Massive MIMO, which … Continue reading Dynamic Cooperation Clusters

Multiple Antenna Technologies for Beyond 5G

I am one of the guest editors of the JSAC special issue on “Multiple Antenna Technologies for Beyond 5G” which had its submission deadline on October 1. We received 133 submissions that span emerging topics such as Cell-free Massive MIMO, intelligent reflective surfaces, terahertz communications, new hardware architectures (e.g., lens arrays), and index modulation. It … Continue reading Multiple Antenna Technologies for Beyond 5G

Reproducible Research: Best Practices and Potential Misuse

In the May issue of the IEEE Signal Processing Magazine, you can read the most personal article that I have written so far. It is entitled “Reproducible Research: Best Practices and Potential Misuse” and is available on IEEEXplore and ArXiv.org. In this article, I share my experiences of making simulation code openly available. I started … Continue reading Reproducible Research: Best Practices and Potential Misuse

Radio Stripes – Distributed Massive MIMO Deployment

Distributed MIMO deployments combine the best of two worlds: The beamforming gain and spatial interference suppression capability of conventional Massive MIMO with co-located arrays, and the bigger chance of being physically close to a service antenna that small cells offer. Coherent transmission and reception from a distributed MIMO array is not a new concept but … Continue reading Radio Stripes – Distributed Massive MIMO Deployment

Could chip-scale atomic clocks revolutionize wireless access?

This chip-scale atomic clock (CSAC) device, developed by Microsemi, brings atomic clock timing accuracy (see the specs available in the link) in a volume comparable to a matchbox, and 120 mW power consumption.  This is way too much for a handheld gadget, but undoubtedly negligible for any fixed installation powered from the grid.  An alternative to synchronization … Continue reading Could chip-scale atomic clocks revolutionize wireless access?