Category Archives: Commentary

The RISe of Experimental Research

The academic research into wireless communication is fast-paced, enabled by the fact that one can write a paper in just a few months if it only involves mathematical derivations and computer simulations. This feature can be a strength when it comes to identifying new concepts and developing know-how, but it also leaves a lot of research results unproven in the real world. Even if the math is correct, the underpinning models simplify the physical world. The models can have served us well in the past, but might have to be refined to keep delivering accurate insights as wireless technology becomes more advanced. This is why experimental validation is essential to build credibility behind new wireless functionalities.

Unfortunately, there are many disadvantages to being an experimental researcher in the wireless communication community. It takes longer to gather material for publications, the required hardware equipment makes the research much more expensive, and experimental results are seldom given the recognition they deserve (e.g., when awards and citations are handed out). As a result, theoretical works dominate ComSoc’s scientific journals.

The dominance of purely theoretical contributions means that we can accidentally build an entire house of cards of an emerging concept before we have validated experimentally that the foundation is solid. We can take the pilot contamination phenomenon as an example: hundreds of theoretical papers analyzed its consequences in the last decade and devised algorithms to mitigate it. However, I have not seen any experimental work validating any of it.

Experiments on Reconfigurable Intelligent Surfaces Get Recognition

In recent years, the most hyped new technology is reconfigurable intelligent surfaces (RIS). My research on this topic started five years ago when I became suspicious of the claims and modeling provided in some early works. We addressed these issues in the paper “Reconfigurable Intelligent Surfaces: Three Myths and Two Critical Questions” in 2020, but I remained skeptical of the technology’s maturity until later that year. That is when a group at the University of Surrey published a video showcasing an experimental proof-of-concept in an indoor scenario.

Further experimental results were disseminated right after that. 2024 is a special year: IEEE ComSoc decided to award two of these works with their finest awards for journal publications, thereby recognizing the importance of elevating the technology readiness level (TRL) through validation and field trials.

The IEEE Marconi Prize Paper Award went to the paper “Wireless Communications With Reconfigurable Intelligent Surface: Path Loss Modeling and Experimental Measurement“. This paper validated the theoretical near-field pathloss formulas for RIS-aided communications through measurements in an anechoic chamber.

The IEEE ComSoc Stephen O. Rice Prize went to the paper “RIS-Aided Wireless Communications: Prototyping, Adaptive Beamforming, and Indoor/Outdoor Field Trials“. This paper raised the TRL to 5 by demonstrating the use of the technology in a real WiFi network using existing power measurements for over-the-air RIS configuration. Experiments were made in both indoor and outdoor scenarios. I thank Prof. Haifan Yin and his team at Huazhong University of Science and Technology for involving me in this prototyping effort.

Thanks to experimental works like these, we know that the RIS technology is practically feasible to build, the basic theoretical formulas match reality, and an RIS can provide substantial gains in the intended deployment scenarios. However, if the technology should be used in 6G, we still need to find a compelling business case—this was one of the critical questions posed in my 2020 paper and it remains unanswered.

Episode 40: Synchronization of Massive Antenna Arrays

We have now released the 40th episode of the podcast Wireless Future. It has the following abstract:

Many textbook models of communication systems assume that the transmitter and receiver are synchronized in time, frequency, and phase. Achieving and maintaining such synchronization is an often-overlooked practical challenge. However, the importance of synchronization grows as we plan to use larger antenna arrays and distributed MIMO in 6G. In this episode, Emil Björnson and Erik G. Larsson discuss some fundamental principles of synchronization, including the underlying physical phenomena, pilot signaling for phase synchronization, and reciprocity calibration. We especially discuss how the seemingly simplest angular beamforming can be among the hardest features to support from a synchronization perspective, with a digital array. More technical details in the papers Phase Calibration of Distributed Antenna Arrays and Massive Synchrony in Distributed Antenna Systems.

You can watch the video podcast on YouTube:

You can listen to the audio-only podcast at the following places:

Episode 39: Radio Stripes at Terahertz (With Parisa Aghdam)

We have now released the 39th episode of the podcast Wireless Future. It has the following abstract:

Massive bandwidths are available in the sub-terahertz bands, but the coverage of a cellular network exploiting those frequencies will be spotty. The 6GTandem project tries to circumvent this issue by developing a dual-frequency system architecture that jointly uses the sub-6 GHz and sub-THz bands. In this episode, Erik G. Larsson and Emil Björnson are visited by Dr. Parisa Aghdam, Technical Lead of 6GTandem and Research Manager at Ericsson. The discussion starts with potential use cases, such as extended reality services in stadiums and connected factories. The conversation then focuses on hardware aspects, such as how to build a distributed antenna system using plastic microwave fibers and amplifiers so that sub-THz signals can be transmitted from many different locations. You can read more about the EU-funded project and its partners at https://horizon-6gtandem.eu/

You can watch the video podcast on YouTube:

You can listen to the audio-only podcast at the following places:

The Dark Side of Reconfigurable Intelligent Surfaces

The research community often praises reconfigurable intelligent surfaces (RISs) as a transformative technology. By controlling parts of wireless propagation channels, we can improve the bit rates by increasing the received signal strength, mitigating interference, enhancing channel ranks, etc. The potential benefits RISs can bring to wireless networks are now well documented, and several of them have also been demonstrated experimentally. However, the RIS technology also introduces several practical complications that one must be mindful of. In this blog post, I will give two examples of the dark side of the RIS technology.

Pilot contamination between operators

Suppose a telecom operator deploys an RIS to enhance the performance experienced by its customers. The academic literature is full of algorithms that can be used to that end. Each time the operator changes the RIS configuration, it will affect not only the wireless channels within its licensed frequency band but also the channels in many neighboring bands. The phase-shifting in each RIS element acts as an approximately linear-phase filtering operation, which shifts the phases of reflected signals (proportionally to their carrier frequencies) both in the intended and adjacent bands. Since there is no non-linear distortion, the operator’s wireless signals are maintained in their designated band. Nevertheless, the operator messes with the channel characteristics in neighboring bands every time it reconfigures its RIS. In the best-case scenario, the systems operating in neighboring bands only experience additional fading variations. In the worst-case scenario, they will suffer from substantial performance degradation.

An instance of the latter scenario appears when two telecom operators deploy RISs in the same coverage area. We studied this scenario in a recent paper. 5G networks typically use time-division duplex (TDD) bands, and the operators are time-synchronized, so they switch between uplink and downlink simultaneously. This implies that the considered operators will send pilot sequences in parallel, which is usually fine because they are transmitted in different bands. However, if each operator uses its pilot sequences for RIS reconfiguration that helps its own users, it will also modify the other operator’s channels in undesired ways after the estimation has occurred. This leads to a new kind of pilot contamination effect, which differs from that in Massive MIMO but leads to the same bottlenecks: reduced estimation quality and a performance limit at high signal-to-noise ratios (SNRs). Consequently, if a large-scale deployment of RIS occurs in cellular networks, we will see not only the intended performance improvements but also occasional unexpected degradations. More research is needed to quantify this effect and what can be done to mitigate it.

Malicious RIS

While the pilot contamination caused between telecom operators is an unintentional disturbance, RIS could also be used for intentional “silent” jamming. In a recent paper, we analyze the situation where a hacker takes control of an operator’s RIS and turns it into a malicious RIS. Instead of maximizing the received signal strength at a specific user device, the RIS can be configured to minimize the signal strength. Since this is achieved by causing destructive interference over the air, the user device will perceive this as having poor coverage. Conventional jamming builds on sending a strongly interfering signal to prevent data decoding, and this can be easily detected. By contrast, the silent jamming caused by a malicious RIS is hard to detect since it destroys the channel without introducing new signals. In our paper, we demonstrate how a malicious RIS can avoid detection by only destroying the channel for one user device while other devices are unaffected. We also show that malicious reflection is possible even if the RIS has imperfect channel knowledge.

In summary, there is a dark side to the RIS technology. It can both manifest itself through unintentional tampering with the channels in neighboring frequency bands and through the risk that an RIS is hacked and turned into a malicious RIS that degrades rather than improves communication performance. Careful regulation, standardization, hardware design, and security will be required to overcome these challenges.

Book chapters about 6G technology

Several 6G-related edited books have recently been published, which highlights the fact that the 6G-related research has now progressed for at least five years. Although the standardization is yet to begin, we know quite well which new technology components will be on the agenda. This does not mean that everything that is being researched will eventually be used—far from it—but we can be quite sure that 6G will build on a subset of them.

I have co-authored a chapter in the new book Fundamentals of 6G Communications and Networking, published by Springer and edited by Xingqin Lin, Jun Zhang, Yuanwei Liu, and Joongheon Kim. The book contains chapters about 6G visions and tutorials on new waveforms, coding and access schemes, integrated communication and sensing, reconfigurable intelligent surfaces, cell-free networks, non-terrestrial networks, semantic communication, and different aspects of AI.

My contribution was a chapter on Near-Field Beamforming and Multiplexing, written with Parisa Ramezani. We describe how previously negligible physical phenomena become essential when making the antenna arrays larger in future networks. These radiative near-field effects impact everything from pathloss modeling to the physical shapes of transmitted signals and the ability to spatially multiplex many user devices. If you are unfamiliar with these effects, I recommend reading our chapter. We summarize the technical insights and fundamentals from a few recent papers and tell the complete story around it. In a way, it is the detailed version of the following video tutorial:

What is the reason to write a book chapter?

The good thing about writing a book chapter, compared to a tutorial article for a scientific journal, is that you get much freedom to organize it in the way you find most pedagogical. You are typically invited to write a chapter based on your expertise and trusted in your ability to do so; thus, the review process is friendly and constructive.

The fact that your chapter is grouped together with those written by other experts could be a good way of attracting readers. However, one must be cautious because some publishers are particularly greedy when it comes to copyright: they might ban you from ever uploading a preprint to your homepage or arXiv. This happened to me with a chapter about energy-efficient communications in a book published by IET, with the result that it has probably only been read by a handful of people and has no citations. This is because few researchers and universities pay for access to the IET database, and even fewer buy printed books these days. In retrospect, it was clearly not worth the effort put into the writing process—we don’t even get money from book sales. This happened in 2019, but despite the push toward Open Science, there are other publishers that behave badly. Two years ago, I was asked to write a chapter for a book on reconfigurable intelligent surfaces under the same bad conditions, but this time, I was aware of the issue and declined.

Springer is one of the more reasonable open publishers, which allows you to share the preprint immediately and then share the final author version one year after publication. This is at least a step in the right direction.

Episode 38: Things We Learned at the 6G Symposium

We have now released the 38th episode of the podcast Wireless Future. It has the following abstract:

Many topics are studied within the 6G research community, from hardware design to algorithms, protocols, and services. Erik G. Larsson and Emil Björnson recently attended the ELLIIT 6G Symposium in Lund, Sweden. In this episode, they discuss ten things that they learned from listening to the keynote speeches. The topics span from integrated sensing, positioning, and localization via machine-learning applications in communications to fundamental communication theory, such as circuits for universal channel decoding and jamming protection. The expected 6G spectrum ranges, energy efficiency in base stations, and new use cases for electromagnetic materials are also covered. You can find slides from the symposium here.

Ten things we learned

3:22 Integrated sensing and communication 12:45 Positioning using phase-coherent access points 20:42 Experimental work on positioning from ELLIIT Focus period 24:02 Trained activation functions in machine learning 30:25 Learning to operate a reconfigurable intelligent surface 37:15 Guessing Random Additive Noise Decoding (GRAND) 44:30 Protecting digital beamforming against jamming 53:02 6G frequency spectrum 1:01:50 Energy efficiency in base stations 1:08:47 New use cases for electromagnetic materials

You can watch the video podcast on YouTube:

You can listen to the audio-only podcast at the following places:

The Golden Frequencies

The golden frequencies for wireless access are in the band below 6 GHz. Why are these frequencies so valuable? The reasons, of course, are rooted in the physics. First, the wavelength is short enough that a (numerically) large array has an attractive form factor, enabling spatial multiplexing even from a single antenna panel. At the same time, the wavelength is large enough that a sufficiently large aperture can be obtained with a reasonable number of antennas – which, in turn, directly translates into a favorable link budget and high coverage. Second, below 6 GHz, Doppler is low enough, even at high mobility, that reciprocity-based beamforming based on uplink pilots for channel estimation works without relying on prior assumptions on the propagation environment, let alone on the fading statistics. This directly translates into robustness, simplicity of implementation, and scalability with respect to the number of service antennas. Third, these frequencies are not hindered so much by blockage, and strong multipath components can guarantee connectivity even when there is no line-of-sight, while in contrast, for mmWave a human blocking the line-of-sight path can suffice to break the link. Finally, analog microelectronics for the golden bands is mature, and very energy-efficient.

Distributed MIMO (D-MIMO) with reciprocity-based beamforming is the natural way of best exploiting the golden frequencies. This technology naturally operates in the [geometric] near-field of the “super-array” collectively constituted by all antenna panels together. In fact, the actual antenna deployment hardly matters at all! With reciprocity-based beamforming, the physical shape of the actual beams, and grating lobe phenomena in particular, become irrelevant. If anything, given a set of antennas, it is advantageous to spread them out over as large aperture as possible. The only definite no-no is to place antennas closer than half a wavelength together: such dense packing of antennas is almost never meaningful, as sampling points lambda/2-spaced apart captures essentially all the degrees of freedom of the field; putting the antennas closer results in coupling effects that are usually of more harm than benefit.

REINDEER is the European project that develops and demonstrates D-MIMO for the golden frequencies. What are the most important technical challenges? One is, down-to-earth, to handle the vast amounts of baseband data, and process them in real time. Another is time and phase synchronization of distributed MIMO arrays: antenna panels driven by independent local oscillators must be re-calibrated for joint reciprocity every time the oscillators have drifted apart. Locking the clocks using cabling is possible in principle, but considered very expensive to deploy. A third is initial access, covering space uniformly with system information signals, and waking up sleeping devices. A fourth is energy-efficiency, at all levels in the network. A fifth is the integration of service of energy-neutral devices that communicate via backscattering. D-MIMO naturally offers the infrastructure for that, permitting simultaneous transmission and reception from different panels in a bistatic setup; however, these activities break the TDD flow and must be carefully integrated into the workings of the system.

If sub-6 GHz are gold, then what is silver? Perhaps right above: the 7-15 GHz band, that is intended in 6G to extend the “main capacity” layer. It appears that these bands can still be suitable mobile applications, and that higher carriers (28 GHz, 38 GHz) are appropriate for fixed wireless access mostly. But the sub-6 GHz bands will remain golden and the first choice for the most challenging situations: high mobility, area coverage, and outdoor-to-indoor.

Erik G. Larsson
Liesbet Van der Perre