Category Archives: Beyond 5G

Globecom Tutorial on Cell-free Massive MIMO

I am giving a tutorial on “Beyond Massive MIMO: User-Centric Cell-Free Massive MIMO” at Globecom 2020, together with my colleagues Luca Sanguinetti and Özlem Tuğfe Demir. It is a prerecorded 3-hour tutorial that can be viewed online at any time during the conference and there will be a live Q/A session on December 11 where we are available for questions.

The tutorial is based on our upcoming book on the topic: Foundations on User-Centric Cell-free Massive MIMO.

Until December 11 (the last day of the tutorial), we are offering a free preprint of the book, which can be downloaded by creating an account at the NOW publishers’ website. By doing so, I think you will also get notified when the final version of the book is available early next year, so you can gain access to the final PDF and an offer to buy printed copies.

If you download the book and have any feedback that we can take into account when preparing the final version, we will highly appreciate to receive it! Please email me your feedback by December 15. You find the address in the PDF.

The abstract of the tutorial is as follows:

Massive MIMO (multiple-input multiple-output) is no longer a promising concept for cellular networks-in 2019 5G it became a reality, with 64-antenna fully digital base stations being commercially deployed in many countries. However, this is not the final destination in a world where ubiquitous wireless access is in demand by an increasing population. It is, therefore, time for MIMO and mmWave communication researchers to consider new multi-antenna technologies that might lay the foundations for beyond 5G networks. In particular, we need to focus on improving the uniformity of the service quality.

Suppose all the base station antennas are distributed over the coverage area instead of co-located in arrays at a few elevated locations, so that the mobile terminals are surrounded by antennas instead of having a few base stations surrounded by mobile terminals. How can we operate such a network? The ideal solution is to let each mobile terminal be served by coherent joint transmission and reception from all the antennas that can make a non-negligible impact on their performance. That effectively leads to a user-centric post-cellular network architecture, called “User-Centric Cell-Free Massive MIMO”. Recent papers have developed innovative signal processing and radio resource allocation algorithms to make this new technology possible, and the industry has taken steps towards implementation. Substantial performance gains compared to small-cell networks (where each distributed antenna operates autonomously) and cellular Massive MIMO have been demonstrated in numerical studies, particularly, when it comes to the uniformity of the achievable data rates over the coverage area.

Episode 3: Reconfigurable Intelligent Surfaces

We have now released the third episode of the podcast Wireless Future, with the following abstract:

The research towards 6G has already been initiated. One of the most hyped concepts in the research community is “reconfigurable intelligent surfaces”, which can be utilized to create smart walls that capture wireless signals and reflect them towards the user device. In this episode, Erik G. Larsson and Emil Björnson discuss the prospects and limitations of this new technology. Is it the next big thing in wireless? To learn more, they recommend their new overview article “Reconfigurable Intelligent Surfaces: Three Myths and Two Critical Questions”, to appear in IEEE Communications Magazine, which can be downloaded at https://arxiv.org/pdf/2006.03377.

You can watch the video podcast on YouTube:

You can listen to the audio-only podcast at the following places:

Episode 2: Myths About Massive MIMO

We have now released the second episode of the podcast Wireless Future, with the following abstract:

There are often hypes and speculations around new wireless technologies, including “Massive MIMO”, which is the key new feature in 5G. In 2015, Emil Björnson and Erik G. Larsson wrote the article “Massive MIMO: Ten Myths and One Critical Question” together with Thomas Marzetta. It was an attempt to dispel some of the misconceptions that were floating around at the time. In this episode, they look back at the statements they claimed to be myths to see if they were right and whether the myths are still around. The article received the 2019 Fred W. Ellersick Prize from the IEEE Communications Society and can be downloaded at https://arxiv.org/pdf/1503.06854.

You can watch the video podcast on YouTube:

You can listen to the audio-only podcast at the following places:

New Podcast: Wireless Future

I am excited to announce the new podcast “Wireless Future“, where Emil Björnson and Erik G. Larsson are discussing current and future wireless technologies, as well as their impact on society. Each episode will focus on a particular topic and be available in two formats: A video podcast on YouTube and an audio-only podcast that can be downloaded from the major podcast apps (there is a list below). We intend to release one episode every other week, starting from today. We hope you will enjoy it! Please send us feedback, questions, and suggestions on future topics to podcast@ebjornson.com.

Episode 1: Massive MIMO: Where do we stand?

In the first episode of “Wireless Future”, Erik G. Larsson and Emil Björnson talk about the brand new 5G networks and what role the technology component “Massive MIMO” is playing. They reflect upon whether the practical implementation of the technology became as they envisioned in their textbooks “Fundamentals of Massive MIMO” and “Massive MIMO Networks”.

You can listen to the audio-only podcast at the following places:

The End of Independent Rayleigh Fading

When researchers study the basic properties of multi-antenna technologies, it is a common practice to model the channels using independent and identically distributed (i.i.d.) Rayleigh fading. This practice goes back many decades and is convenient since: 1) every antenna observes an independent realization of the channel; 2) each antenna is statistically equally good, so the ordering doesn’t matter; 3) the channel coefficients are complex Gaussian distributed, which leads to convenient mathematics.

The i.i.d. Rayleigh fading model has become the baseline that is considered unless the research is explicitly focused on a different model. When using the model to study spatial diversity, the diversity gain becomes proportional to the number of antennas. When characterizing the ergodic capacity of Massive MIMO, one can derive simple closed-form bounds where the SINR is proportional to the number of antennas. Both results are correct, but their generality is limited by the generality of the underlying fading model. Hence, it is important to know under what conditions i.i.d. Rayleigh fading can be observed.

When i.i.d. fading might occur

In isotropic scattering environments, where the multi-path components are uniformly distributed over all directions (in three dimensions), the fading realizations observed at two points have a correlation determined by the distance d between them. More precisely, the cross-correlation is sinc(2d/λ), where λ is the wavelength. The sinc function is zero when the argument is a non-zero integer, thus the fading realizations at two different points are uncorrelated if and only if they are separated by an integer multiple of λ/2. For example, d = λ/2, λ, 3λ/2, etc. Since the channel coefficients are Gaussian distributed in isotropic fading, uncorrelated fading results in independent fading.

The figure above illustrates a setup where 3 antennas are deployed on the dashed line with a separation of λ/2. The red circles around the “red antenna” show at which locations one can observe fading realizations that are independent of the observation made at the red antenna. The circles have radius λ/2, λ, 3λ/2, etc. The blue and green circles have the same meanings for the blue and green antennas, respectively. Since all the antennas are deployed on the circles of the other antennas, they will observe mutually uncorrelated (independent) fading. This will give rise to i.i.d. Rayleigh fading.

Suppose we want to deploy a fourth antenna. To retain an i.i.d. fading distribution, we must put it at a point where a red, a blue, and a green circle intersect. As indicated by the figure, such points are only be found along the dashed line. Hence, a uniform linear array (ULA) with λ/2-separation between the adjacent antennas will observe i.i.d. fading if deployed in an isotropic scattering environment.

When i.i.d. fading cannot occur

Apart from the ULA example, there is essentially no other case where i.i.d. fading can occur. This is important since two-dimensional planar arrays are becoming standard, for example, when deploying Massive MIMO in cellular networks. Even if we allow ourselves to deviate from the isotropic scattering assumption, any physically accurate stochastic channel model for planar arrays exhibits correlation. This is proved in the paper “Spatially-Stationary Model for Holographic MIMO Small-Scale Fading“.

The horizontal and vertical ULAs in the figure above can observe i.i.d. fading, while the planar array cannot; even if the horizontal and vertical antenna spacing is λ/2, the spacings along the diagonals are different.

Looking further into the future, two new array concepts are currently receiving attention from the research community:

  1. Large intelligent surfaces (LIS);
  2. Reconfigurable intelligent surfaces (RIS).

LIS are large active arrays, while RIS are large passive arrays with elements that scatter incident signals in a semi-controllable fashion. In both cases, the word “surface” signifies that at a planar array, or even a three-dimensional array, is considered. Hence, these arrays can never observe i.i.d. fading—it is physically impossible. Moreover, a key characteristic of LIS and RIS is that the element spacing is smaller than λ/2 (to approximate a continuously controllable surface), which is yet another reason for obtaining spatial channel correlation. It is therefore worrying that several early papers on these topics are making use of the i.i.d. fading model: the analysis might be beautiful but the results are insignificant since they cannot be observed in practice.

The way forward

Even if we have reached the end of the road for the i.i.d. Rayleigh fading model, we don’t have to wander into the darkness. We just need to switch to utilizing the more general spatially correlated Rayleigh fading model. There is already a rich literature on how to design communication systems for such channels. My book “Massive MIMO networks” is one possible starting point, but not the only one.

To make the transition to physically accurate models easier, I have co-authored the paper “Rayleigh Fading Modeling and Channel Hardening for Reconfigurable Intelligent Surfaces“, which derives a spatial correlation model for LIS and RIS in isotropic scattering environments. It can take the role as the new baseline channel model that is used when no other specific channel model is studied. We also elaborate on why the classical “Kronecker approximation” of spatial correlation matrices is inaccurate; for example, it results in i.i.d. fading also for planar arrays.

What Happens When Arrays Become Physically Large?

Massive MIMO is all about using large arrays to transmit narrow beams, thereby increasing the received signal power and enabling spatial multiplexing of signals in different directions. Importantly, the words “large” and “massive” have relative meanings in this context: they refer to having many transceiver chains, which leads to many more spatial degrees of freedom in the beamforming design than in previous cellular technologies. However, the physical sizes of the 5G Massive MIMO arrays that are being deployed are similar to previous base station equipment. The reason is that the number of radiating elements is roughly the same and this is what determines the physical size.

What if we would deploy physically large arrays?

Since base station arrays are deployed at elevated places, many tens of meters from the users, 5G antenna arrays will look small from the viewpoint of the user. This situation might change in the future, when moving beyond 5G. Suppose we would cover the entire facade of a building with antennas, as illustrated in Figure 1, then the array would be physically large, not only feature a large number of transceiver chains.

Figure 1: A 5G Massive MIMO array has many antennas but is not physically large. This blog post considers physically large arrays that might be deployed over an entire building.

There are unusual wireless propagation phenomena that occur in such deployments and these have caught my attention in recent years. A lot of research papers on Massive MIMO consider the asymptotic regime where the number of antennas (transceiver chains) goes to infinity, but the channel models that are being used break down asymptotically. For example, the received signal power goes to infinity although the transmitted power is finite, which is physically impossible.

This inconsistency was a reason for why I didn’t jump onto the Massive MIMO train when it took off in 2010, but waited until I realized that Marzetta’s mind-blowing asymptotic results are also applicable in many practical situations. For example, if the users are at least ten meters away from the base station, we can make use of thousands of antennas before any inconsistencies arise. The asymptotic issues have been stuck in my mind ever since but now I have finally found the time and tools needed to characterize the true asymptotic behaviors.

Three important near-field characteristics

Three phenomena must be properly modeled when the user is close to a physically large array, which we call the array’s near-field. These phenomena are:

  1. The propagation distance varies between the different antennas in the array.
  2. The antennas are perceived to have different effective areas since they are observed from different angles.
  3. The signal losses due to polarisation mismatch vary due to the different angles.

Wireless propagation channels have, of course, always been determined by the propagation distances, effective antenna areas, and polarisation losses. However, one can normally make the approximation that they are equal for all antennas in the array. In our new paper “Power Scaling Laws and Near-Field Behaviors of Massive MIMO and Intelligent Reflecting Surfaces“, we show that all three conditions must be properly modeled to carry out an accurate asymptotic study. The new formulas that we present are confirming the intuition that the part of the array that is closest to the user is receiving more power than the parts that are further away. As the array grows infinitely large, the outer parts receive almost nothing and the results comply with fundamental physics, such as the law of conservation of energy.

You might have heard about the Fraunhofer distance, which is the wavelength-dependent limit between the near-field and far-field of a single antenna. This distance is not relevant in our context since we are not considering the radiative behaviors that occur close to an antenna, but the geometric properties of a large array. We are instead studying the array’s near-field, when the user perceives an electrically large array. The result is wavelength-independent and occurs approximately when the propagation distance is shorter than the widest dimension of the array. This is when one must take the three properties above into account to get accurate results. Note that it is not the absolute size of the array that matters but how large it is compared to the field-of-view of the user.

Figure 2 illustrates this property by showing the channel gain (i.e., the fraction of the transmitted power that is received) in a setup with an isotropic transmit antenna that is 10 m from the center of a square array. The diagonal of the array is shown on the horizontal axis. The solid red curve is computed using our new accurate formula, while the blue dashed curve is based on the conventional far-field approximation. The curves are overlapping until the diagonal is 10 m (same as the propagation distance). The difference increases rapidly when the array becomes larger (notice the logarithmic scale on the vertical axis). When the diagonal is 50 m, the approximation errors are extreme: the channel gain surpasses 1, which means that more power is received than was transmitted.

Figure 2: The channel gain when transmitting from a user that is 10 m from a square array. The conventional far-field approximation is accurate until the array becomes so large that one must take the three near-field characteristics into account.

There are practical applications

There are two ongoing lines of research where the new near-field results and insights are useful, both to consolidate the theoretical understanding and from a practical perspective.

One example is the physically large and dense Massive MIMO arrays which are being called large intelligent surfaces and holographic MIMO. These names are utilized to distinguish the analysis from the physically small Massive MIMO products that are now being deployed in 5G. Another example is the “passive” metasurface-based arrays that are being called reconfigurable intelligent surfaces and intelligent reflecting surfaces. These are arrays of scattering elements that can be configured to scatter an incoming signal from a transmitter towards a receiver.

We are taking a look at both of these areas in the aforementioned paper. In fact, the reason why we initiated the research last year is that we wanted to understand how to compare the asymptotic behaviors of the two technologies, which exhibit different power scaling laws in the far-field but converge to similar limits in the array’s near-field.

If you would like to learn more, I recommend you to read the paper and play around with the simulation code that you can find on GitHub.