Is 5G a Failed Technology?

Four years ago, I reviewed the book “The 5G Myth” by William Webb. The author described how the telecom industry was developing a 5G technology that addresses the wrong issues; for example, higher peak rates and other things that are barely needed and seldom reached in practice. Instead, he argued that a more consistent connectivity quality should be the goal for the future. I generally agree with his criticism of the 5G visions that one heard at conferences at the time, even if I noted in my review that the argumentation in the book sometimes was questionable. In particular, the book propagated several myths about the MIMO technology.

Webb wrote a blog post earlier this year where he continues to criticize 5G, this time in the form of analyzing whether the 5G visions have been achieved. His main conclusion is that “5G is a long way from delivering on the original promises”, thereby implying that 5G is a failed technology. While the facts that Webb is referring to in his blog post are indisputable, the main issue with his argumentation is that what he calls the “original promises” refer to the long-term visions that were presented by a few companies around 2013 and not the actual 5G requirements by the ITU. Moreover, it is way too early to tell if 5G will reach its goals or not.

Increasing data volumes

Let us start by discussing the mobile data volumes. Webb is saying that 5G promised to increase them by 1000 times. According to the Ericsson Mobility Report, it has grown in North America from 1 to 4 EB/month between 2015 and 2020. This corresponds to an annual increase of 32%. This growth is created by a gradual increase in demand for wireless data, which has been enabled by a gradual deployment of new sites and an upgrade of existing sites. Looking ahead, the Mobility Report predicts another 3.5 times growth over the next 5 years, corresponding to an annual increase of 28%. These predictions have been fairly stable over the last few years. The point I want to make is that one cannot expect 5G to drastically change the data volumes from one day to the next, but the goal of the technological evolution is to support and sustain the long-term growth in data traffic, likely being at around 30% per year in the foreseeable future. Whether 5G will enable this or not is too early to tell, because we have only had the opportunity to observe one year of 5G utilization, at a few markets.

The mobile data traffic in North America according to the Ericsson Mobility Report.

Importantly, the 5G requirements defined by ITU don’t contain any relative targets when it comes to how large the increase in data volumes should be over 4G. The 1000 times increase, that Webb is referring to, originates from a 2012 white paper by Qualcomm. This paper discusses (in general terms) how to overcome the “1000x mobile data challenge” without saying that 5G alone should achieve it or what the exact time frame would be. Nokia presented a similar vision in 2013. I have used the 1000x number in several talks, including a popular YouTube video. However, the goal of the discussion has only been to explain how we can build networks that support 1000 times higher data volumes, not to claim that the demand will grow by such an immense factor any time soon. Even if the traffic would suddenly start to double every year, it takes 10 years to reach a 1000x higher traffic than today.

The current state of 5G

The 5G deployments have so far been utilizing Massive MIMO technology in the 3 GHz band. This is a technology for managing higher data volumes by spatial multiplexing of many users, thus it is only when the traffic increases that we can actually measure how well the technology performs. Wireless data isn’t a fixed resource that we can allocate as we like between the users, but the data volume depends on the number of multiplexed users and their respective propagation conditions. However, field trials have shown that the technology delivers on the promise of achieving much higher spectral efficiencies.

When it comes to higher peak data rates, there are indeed ITU targets that one can compare between network generations. The 4G target was 1 Gbps, while it is 20 Gbps in 5G. The latter number is supposed to be achieved using 1 GHz of spectrum in the mmWave bands. The high-band 5G deployments are still in their infancy, but Verizon has at least reached 5 Gbps in their network.

To be fair, Webb is providing a disclaimer in his blog post saying that his analysis is based on the current state of 5G, where mmWave is barely used. My point is that it is too early to conclude whether 5G will reach any of its targets since we are just in the first phase of 5G deployments. Most of the new features, including lower latency, higher peak rates, and massive IoT connectivity aren’t suppose to be supported until much later. Moreover, the consistent connectivity paradigm that Webb pushed for in his book, is what 5G might deliver using cell-free implementations, for example, using the Ericsson concept of radio stripes.

Webb makes one more conclusion in his blog post: “4G was actually more revolutionary than 5G.” This might be true in the sense that it was the first mobile broadband generation to be utilized in large parts of the world. While the data volumes have “only” increased by 30% per year in North America in the last decade, the growth rate has been truly revolutionary in developing parts of the world (e.g., +120% per year in India). There is a hope that 5G will eventually be the platform that enables the digitalization of society and new industries, including autonomous cars and factories. The future will tell whether those visions will materialize or not, and whether it will be a revolution or an evolution.

Is 5G a failed technology?

That is too early to tell since the 5G visions have focused on the long-term perspective, but so far I think it progresses as planned. When discussing these matters, it is important to evaluate 5G against the ITU requirements and not the (potentially) over-optimistic visions from individual researchers or companies. As Bill Gates once put it:

We always overestimate the change that will occur in the next two years and underestimate the change that will occur in the next ten. ”

2 thoughts on “Is 5G a Failed Technology?”

  1. ITU requirements are of course important. But, one has to remember that mobile phone systems are built for mobile operators to support their needs. So the only ones that can judge whether or not 5G has been a success are the mobile operators themself! They are the ones that pays for the systems!

    What were then the mobile operators expectations on 5G? A fair summary can be found in the NGMN white paper from 2015. https://ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf

    In the paper NGMN presents twenty five use cases for 5G that are grouped into eight use case families. The question is then: does the current releases of 5G support all these use cases?

    My spontaneous answer is No! But there is currently a lot of work ongoing by the network equipment vendors on new releases, so with time I am pretty sure that 5G (or maybe 6G) will provide support for all the use cases that the operators are longing for 🙂

  2. A colleague of mine who is working with 3GPP standardization shared a reflection on this the other day. Historically, the first release of every new “G” has underdelivered, but as it evolves it catches up. 5G is only one release in – it will continue to evolve and improve as the work continues.

Leave a Reply

Your email address will not be published. Required fields are marked *