Massive MIMO at 60 GHz vs. 2 GHz: How Many More Antennas?

Erik G. Larsson
Dept. of EE, Linköping University, Sweden

joint work with

T.L. Marzetta, Nokia Bell-Labs
H. Yang, Nokia Bell-Labs
H.Q. Ngo, QU Belfast, Ireland
Cellular Massive MIMO in PCS bands offers uniformly high QoS

- 1 ms × 200 kHz channel coherence, 100 antennas
- Max-min fairness power control
We compared PCS (1.9 GHz) with mmWave (60 GHz) in line-of-sight.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell radius</td>
<td>500 m</td>
</tr>
<tr>
<td>Mobility</td>
<td>negligible</td>
</tr>
<tr>
<td>No. of multiplexed terminals</td>
<td>18</td>
</tr>
<tr>
<td>Base station height</td>
<td>30 m</td>
</tr>
<tr>
<td>Terminal height</td>
<td>1.5 m</td>
</tr>
<tr>
<td>Propagation</td>
<td>free-space/line-of-sight</td>
</tr>
<tr>
<td>Antenna type</td>
<td>omni (0 dBi)</td>
</tr>
<tr>
<td>Power control</td>
<td>max-min fairness (uniform QoS)</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>20 MHz</td>
</tr>
<tr>
<td>Downlink power</td>
<td>10 W</td>
</tr>
<tr>
<td>Uplink power</td>
<td>200 mW</td>
</tr>
<tr>
<td>Base station noise figure</td>
<td>9 dB</td>
</tr>
<tr>
<td>Terminal noise figure</td>
<td>9 dB</td>
</tr>
</tbody>
</table>
Simple, exact performance formulas are available in closed form...

- Zero-forcing in the downlink:
 \[
 y_k = \sqrt{\sum_{k'=1}^{K} \left[(H^H H)^{-1} \right]_{k',k'} \eta_{k'}} \cdot q_k + w_k
 \]

- SINR for \(k \)th terminal:
 \[
 \text{SINR} = \frac{\rho \beta_k \eta_k}{\sum_{k'=1}^{K} \left[(H^H H)^{-1} \right]_{k',k'} \cdot \eta_{k'}}
 \]

- Max-min fairness choice of \(\eta_k \):
 \[
 \eta_k = \frac{\sum_{k'=1}^{K} 1/\beta_{k'}}{\beta_k}
 \]

- Resulting max-min optimal SINR:
 \[
 \overline{\text{SINR}} = \frac{\rho}{\sum_{k'=1}^{K} \left[(H^H H)^{-1} \right]_{k',k'}/\beta_{k'}}
 \]

(uptlink similarly)
Link budget calculation: 128-antenna PCS \rightarrow 128,000-antenna mmWave

\[
\begin{align*}
A_e &\approx 0.12\lambda^2 \\
(\frac{60}{1.9})^2 &\approx 1000\times!
\end{align*}
\]
But more antennas \rightarrow better orthogonality \rightarrow less power to invert channel

\[
\text{SINR} = \frac{\rho}{\sum_{k'=1}^{K} [(H^H H)^{-1}]_{k', k'} / \beta_{k'}}
\]

...so much fewer antennas might be needed
128-antenna PCS compares to 10,000-antenna mmWave

PCS
128 antennas
uniform QoS

mmWave
10,000 antennas
uniform QoS

arXiv:1702.06111
All arrays are physically rather compact

<table>
<thead>
<tr>
<th>95%-likely SINR</th>
<th>Number of antennas</th>
<th>Array diameter (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCS</td>
<td>mmWave</td>
</tr>
<tr>
<td>10 dB</td>
<td>58</td>
<td>370</td>
</tr>
<tr>
<td>20 dB</td>
<td>100</td>
<td>853</td>
</tr>
<tr>
<td>30 dB</td>
<td>177</td>
<td>5100</td>
</tr>
</tbody>
</table>
The array geometry does not really matter
Conclusion

10,000-antenna mmWave might compare to 128-antenna PCS,

in static line-of-sight
Question: will blocking at mmWave require a sparse frequency reuse?

- wood (3 cm): 5-10 dB
- human body: 20-35 dB
- window (single): 2-3 dB
- window (double): 10-15 dB
- window (coated): >40 dB
- brick wall: “∞”
Question: in mmWave bands, can hybrid beamforming help?

Less electronics?
Even 16-fold reduction yields $10,000 \div 16 = 625$!
From measurements: in PCS bands, hybrid beamforming is not effective

2.6 GHZ
128 ant.
linear array
2017 JOINT IEEE SIGNAL PROCESSING SOCIETY
AND EURASIP SUMMER SCHOOL ON SIGNAL PROCESSING
FOR 5G WIRELESS ACCESS

Gothenburg, Sweden, May 29 – June 1, 2017

- Fundamentals of Massive MIMO
- Advanced SP for Massive MIMO
- FDD Massive MIMO
- Fundamentals of mmWave communications
- Compressed sensing for mmWave
- Positioning using mmWave signals
- Wireless access for massive machine-type communication

www.sp-for-5g.com

Looking for additional sponsors!