Massive MIMO at 60 GHz vs. 2 GHz: How Many More Antennas?

Erik G. Larsson

Dept. of EE, Linköping University, Sweden

joint work with

T.L. Marzetta, Nokia Bell-Labs H. Yang, Nokia Bell-Labs H.Q. Ngo, QU Belfast, Ireland

NOKIA Bell Labs

Cellular Massive MIMO in PCS bands offers uniformly high QoS

We compared PCS (1.9 GHz) with mmWave (60 GHz) in line-of-sight

`			
Cell radius	500 m		
Mobility	negligible		
No. of multiplexed terminals	18		
Base station height	30 m		
Terminal height	1.5 m		
Propagation	free-space/line-of-sight		
Antenna type	omni (0 dBi)		
Power control	max-min fairness (uniform QoS)		
Bandwidth	20 MHz		
Downlink power	10 W		
Uplink power	200 mW		
Base station noise figure	9 dB		
Terminal noise figure	9 dB		

Simple, exact performance formulas are available in closed form...

Zero-forcing in the downlink:

$$y_k = \sqrt{\frac{\rho \beta_k \eta_k}{\sum_{k'=1}^K \left[(\boldsymbol{H}^H \boldsymbol{H})^{-1} \right]_{k'k'} \cdot \eta_{k'}}} \cdot q_k + w_k$$

▶ SINR for *k*th terminal:

$$\mathsf{SINR} = \frac{\rho \beta_k \eta_k}{\sum_{k'=1}^{K} \left[(\mathbf{H}^H \mathbf{H})^{-1} \right]_{k'k'} \cdot \eta_{k'}}$$

• Max-min fairness choice of η_k :

$$\eta_k = \frac{\sum_{k'=1}^K 1/\beta_{k'}}{\beta_k}$$

Resulting max-min optimal SINR:

$$\overline{\mathsf{SINR}} = \frac{\rho}{\sum_{k'=1}^{K} \left[(\mathbf{H}^H \mathbf{H})^{-1} \right]_{k'k'} / \beta_{k'}}$$

(uplink similarly)

Link budget calculation: 128-antenna PCS \rightarrow 128,000-antenna mmWave

But more antennas \rightarrow better orthogonality \rightarrow less power to invert channel

M = 5

M = 100

$$\overline{\mathsf{SINR}} = \frac{\rho}{\sum_{k'=1}^{K} \left[(\mathbf{H}^H \mathbf{H})^{-1} \right]_{k'k'} / \beta_{k'}}$$

...so much fewer antennas might be needed

128-antenna PCS compares to 10,000-antenna mmWave

arXiv:1702.06111

All arrays are physically rather compact

	Number		Array diameter	
	of antennas		(meter)	
95%-likely SINR	PCS	mmWave	PCS	mmWave
10 dB	58	370	1.5	0.29
20 dB	100	853	2.5	0.68
30 dB	177	5100	4.4	4.1

The array geometry does not really matter

Conclusion

10,000-antenna mmWave might compare to 128-antenna PCS,

in static line-of-sight

Question: will blocking at mmWave require a sparse frequency reuse?

wood (3 cm):		
human body:		
window (single):		
window (double):		
window (coated):		
brick wall:		

5-10 dB 20-35 dB 2-3 dB 10-15 dB >40 dB "∞"

Question: in mmWave bands, can hybrid beamforming help?

Less electronics? Even 16-fold reduction yields 10,000 / 16 = 625 !

From measurements: in PCS bands, hybrid beamforming is not effective

J. Flordelis, F. Rusek, F. Tufvesson, E.G. Larsson, O. Edfors, arXiv: 1704.00

2017 JOINT IEEE SIGNAL PROCESSING SOCIETY AND EURASIP SUMMER SCHOOL ON SIGNAL PROCESSING FOR 5G WIRELESS ACCESS Organized by

Gothenburg, Sweden, May 29 – June 1, 2017

- Fundamentals of Massive MIMO
- Advanced SP for Massive MIMO
- FDD Massive MIMO
- Fundamentals of mmWave communications
- Compressed sensing for mmWave
- Positioning using mmWave signals
- \circ Wireless access for massive machine-type communication

www.sp-for-5g.com

Looking for additional sponsors!