Massive MIMO for Maritime Communications

The Norwegian startup company Super Radio has during the past year made several channel measurement campaigns for Massive MIMO for land-to-sea communications, within a project called MAMIME (LTE, WIFI and 5G Massive MIMO Communications in Maritime Propagation Environments). There are several other companies and universities involved in the project.

The maritime propagation environment is clearly different from the urban and suburban propagation environments that are normally modeled in wireless communications. For example, the ground plane consists of water, and the sea waves are likely to reflect the radio waves in a different way than the hard surface on land. Except for islands, there won’t be many other objects that can create multipath propagation in the sea. Hence, a strong line-of-sight path is key in these use cases.

The MAMIME project is using a 128-antenna horizontal array, which is claimed to be the largest in the world. Such an array can provide narrow horizontal beams, but no elevation beamforming – which is probably not needed since the receivers will all be at the sea level. The array consists of 4 subarrays which each has a dimension of 1070 x 630 mm. Frequencies relevant for LTE and WiFi have been considered so far. The goal of the project is to provide “extremely high throughputs, stability and long coverage” for maritime communications. I suppose that range extension and spatial multiplexing of multiple ships is what this type of Massive MIMO system can achieve, as compared to a conventional system.

A first video about the project was published in December 2017:

Now a second video has been released, see below. Both videos have been recorded outside Trondheim, but Kan Yang at Super Radio told me that further measurements outside Oslo will soon be conducted, with focus on LTE Massive MIMO.

A Look at an LTE-TDD Massive MIMO Product

I wrote earlier about the Ericsson AIR 6468 that was deployed in Russian in preparation for the 2018 World Cup in football. If you are curious to know more about this Massive MIMO product, among the first of its kind, you can read the public documents that were submitted to FCC for approval. For example, if you click on the link above and then select “Conf Exhibit 9 Internal photos” you will see how the product looks at the inside.

I will now summarize some of the key properties of this LTE TDD product. AIR stands for Antenna Integrated Radio, and Ericsson AIR 6468 is a unit with 64 antennas connected to 64 transmitter/receiver branches. This allows for fully digital beamforming, but the baseband processing is taking place in a separate unit that is connected to AIR 6468 with an optical cable. Hence, the processing unit can be updated to support future LTE releases and more advanced signal processing.

There are different versions of AIR 6468 that are targeting different LTE bands, for example, 2496-2690 MHz and 3400–3600 MHz. These units weight 60.4 kg and are 988 x 520 x 187 mm, which clearly demonstrates that Massive MIMO does not require physically large arrays; the height is typical for an LTE antenna, while the width is slightly larger. This can be seen in the image below, where the AIR 6468 is in the middle.

 

The array can be mounted on a wall or a pole, and tilted in various ways. As far as I understand, the 64 antennas consist of 32 dual-polarized antennas, which are arranged on a rectangular grid with 4 antennas in the vertical dimension and 8 antennas in the horizontal dimension. The reason that the array is still physically larger in the vertical dimension is the larger vertical antenna spacing, which is the common practice to achieve a narrower vertical beamwidth since most users are concentrated around the same elevation angles in practical deployments (see Section 7.3-7.4 in Massive MIMO Networks for a more detailed explanation).

QPSK, 16-QAM, 64-QAM, and 256-QAM are the supported modulation types. AIR 6468 can perform carrier aggregation of up to three carriers of 15 or 20 MHz each. The maximum radiated transmit power is 1.875 W per antenna, which corresponds to 120 W in total for the array. I suppose this means 40 W in total in each 15-20 MHz carrier (and 0.625 W per antenna), but it is of course the spectrum licenses that determine the actual numbers.

64 or 128 Antennas?

After some successful trials, the first deployments of TDD-LTE with Massive MIMO functionality were unveiled earlier this year. For example, the telecom operator Sprint turned on Massive MIMO base stations in Chicago, Dallas, and Los Angeles last April.

If you read the press release from Sprint, it is easy to get confused regarding the number of antennas being used:

Sprint will deploy 64T64R (64 transmit, 64 receive) Massive MIMO radios using 128 antennas working with technology leaders Ericsson, Nokia, and Samsung Electronics.

From reading this quote, I get the impression that the Massive MIMO arrays contain 128 antennas, whereof 64 are used for the transmission and another 64 for the reception. That would be a poor system design, since channel reciprocity can only be exploited in TDD if the same antennas are used for both transmission and reception!

Fortunately, this is not what Sprint and other operators have actually deployed. According to my sources, the arrays contain 64 dual-polarized elements, so there are indeed 128 radiating elements. However, as I explained in a previous blog post, an antenna consists of a collection of radiating elements that are connected to the same RF chain. The number of antennas is equal to the number of RF chains, which is 64 in this case. The reason that Sprint points out that there are 64 transmit antennas and 64 receive antennas is because different RF chains are used for transmission and reception. The system switches between them according to the TDD protocol. In principle, one could design an array that has a different number of RF chains in the uplink than in the downlink, but that is not the case here.

So how are the 128 elements mapped to 64 antennas (RF chains)? This is done by taking pairs of vertically adjacent elements, which have the same polarization, and connecting them to the same RF chain.  This is illustrated in the figure to the right (see this blog post for pictures of how the actual arrays look like). As compared to having 128 RF chains (and antennas), this design choice results in lower flexibility in elevation beamforming, but the losses in data rates and multiplexing capability are supposed to be small since there are much larger variations in azimuth angles between the users in a cellular network than in the elevation angles. (This is explained in detail in Section 7.3-7.4 of my book). The advantage is that the implementation is more compact and less expensive when having 64 instead of 128 antennas.

Free PDF of Massive MIMO Networks

The textbook Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency, that I’ve written together with Jakob Hoydis and Luca Sanguinetti, is from now on available for free download from https://massivemimobook.com. If you want a physical copy, you can buy the color-printed hardback edition from now publishers and major online shops, such as Amazon.

You can read more about this book in a previous blog post and also watch this new video, where I talk about the content and motivation behind the writing of the book.

Massive MIMO at the World Cup

Massive MIMO supports an order of magnitude higher spectral efficiency than legacy LTE networks. The largest gains come from spatial multiplexing of many users per cell, thus these gains can only be harvested when there are many users requesting data at every given millisecond, which requires larger traffic loads than you might think since many seemingly continuous user applications only send data sporadically.

For this reason, I used to say that outdoor musical festivals, where a crowd of 100,000 people gather to see their favorite bands, would be a first deployment scenario for Massive MIMO. This is fairly similar to what now has happened: The Russian telecom operator MTS has deployed more than 40 state-of-the-art LTE sites with Massive MIMO functionality in seven cities where the 2018 FIFA World Cup in football is currently taking place. The base stations are deployed to cover the stadiums, fan zones, airports, train stations, and major parks/squares; in other words, the places where huge crowds of football fans are expected.

In the press release, Andrei Ushatsky, Vice President of MTS, says:

Ericsson AIR 6468 base station array with 64 antennas, which is deployed in Russia

“This launch is one of Europe’s largest Massive MIMO deployments, covering seven Russian cities, and is a major contribution by MTS in the preparation of the country’s infrastructure for the global sporting event of the year. Our Massive MIMO technology, using Ericsson equipment, significantly increases network capacity, allowing tens of thousands of fans together in one place to enjoy high-speed mobile internet without any loss in speed or quality.”

While this is one of the first major deployments of Massive MIMO, more will certainly follow in the coming years. More research into the development and implementation of advanced signal processing and resource management schemes will also be needed for many years to come – this is just the beginning.

Disadvantages with TDD

LTE was designed to work equally well in time-division duplex (TDD) and frequency division duplex (FDD) mode, so that operators could choose their mode of operation depending on their spectrum licenses. In contrast, Massive MIMO clearly works at its best in TDD, since the pilot overhead is prohibitive in FDD (even if there are some potential solutions that partially overcome this issue).

Clearly, we will see a larger focus on TDD in future networks, but there are some traditional disadvantages with TDD that we need to bear in mind when designing these networks. I describe the three main ones below.

Link budget

Even if we allocate the same amount of time-frequency resources to uplink and downlink in TDD and FDD operation, there is an important difference. We transmit over half the bandwidth all the time in FDD, while we transmit over the whole bandwidth half of the time in TDD.  Since the power amplifier is only active half of the time, if the peak power is the same, the average radiated power is effectively cut in half. This means that the SNR is 3 dB lower in TDD than in FDD, when transmitting at maximum peak power.

Massive MIMO systems are generally interference-limited and uses power control to assign a reduced transmit power to most users, thus the impact of the 3 dB SNR loss at maximum peak power is immaterial in many cases. However, there will always be some unfortunate low-SNR users (e.g., at the cell edge) that would like to communicate at maximum peak power in both uplink and downlink, and therefore suffer from the 3 dB SNR loss. If these users are still able to connect to the base station, the beamforming gain provided by Massive MIMO will probably more than compensate for the loss in link budget as compared single-antenna systems. One can discuss if it should be the peak power or average radiated power that is constrained in practice.

Guard period

Everyone in the cell should operate in uplink and downlink mode at the same time in TDD. Since the users are at different distances from the base station and have different delay spreads, they will receive the end of the downlink transmission block at different time instances. If a cell center user starts to transmit in the uplink immediately after receiving the full downlink block, then users at the cell edge will receive a combination of the delayed downlink transmission and the cell center users’ uplink transmissions. To avoid such uplink-downlink interference, there is a guard period in TDD so that all users wait with uplink transmission until the outmost users are done with the downlink.

In fact, the base station gives every user a timing bias to make sure that when the uplink commences, the users’ uplink signals are received in a time-synchronized fashion at the base station. Therefore, the outmost users will start transmitting in the uplink before the cell center users. Thanks to this feature, the largest guard period is needed when switching from downlink to uplink, while the uplink to downlink switching period can be short. This is positive for Massive MIMO operation since we want to use uplink CSI in the next downlink block, but not the other way around.

The guard period in TDD must become larger when the cell size increases, meaning that a larger fraction of the transmission resources disappears. Since no guard periods are needed in FDD, the largest benefits of TDD will be seen in urban scenarios where the macro cells have a radius of a few hundred meters and the delay spread is short.

Inter-cell synchronization

We want to avoid interference between uplink and downlink within a cell and the same thing applies for the inter-cell interference. The base stations in different cells should be fairly time-synchronized so that the uplink and downlink take place at the same time; otherwise, it might happen that a cell-edge user receives a downlink signal from its own base station and is interfered by the uplink transmission from a neighboring user that connects to another base station.

This can also be an issue between telecom operators that use neighboring frequency bands. There are strict regulations on the permitted out-of-band radiation, but the out-of-band interference can anyway be larger than the desired inband signal if the interferer is very close to the receiving inband user. Hence, it is preferred that the telecom operators are also synchronizing their switching between uplink and downlink.

Summary

Massive MIMO will bring great gains in spectral efficiency in future cellular networks, but we should not forget about the traditional disadvantages of TDD operation: 3 dB loss in SNR at peak power transmission, larger guard periods in larger cells, and time synchronization between neighboring base stations.

News – commentary – mythbusting