Category Archives: Education

How Distortion from Nonlinear Massive MIMO Transceivers is Radiated Spatially

While the research literature is full of papers that design wireless communication systems under constraints on the maximum transmitted power, in practice, it might be constraints on the equivalent isotropically radiated power (EIRP) or the out-of-band radiation that limit the system operation.

Christopher Mollén recently defended his doctoral thesis entitled High-End Performance with Low-End Hardware: Analysis of Massive MIMO Base Station Transceivers. In the following video, he explains the basics of how the non-linear distortion from Massive MIMO transceivers is radiated in space.

Are Link Simulations Needed Anymore?

One reason for why capacity lower bounds are so useful is that they are accurate proxies for link-level performance with modern coding. But this fact, well known to information and coding theorists, is often contested by practitioners. I will discuss some possible reasons for that here.

The recipe is to compute the capacity bound, and depending on the code blocklength, add a dB or a few, to the required SNR. That gives the link performance prediction. The coding literature is full of empirical results, showing how far from capacity a code of a given block length is for the AWGN channel, and this gap is usually not extremely different for other channel models – although, one should always check this.

But there are three main caveats with this:

  1. First, the capacity bound, or the “SINR” that it often contains, must be information-theoretically correct. A great deal of papers get this wrong. Emil explained in his blog post last week some common errors. The recommended approach is to map the channel onto one of the canonical cases in Figure 2.9 in Fundamentals of Massive MIMO, verify that the technical conditions are satisfied, and use the corresponding formula.
  2. When computing expressions of the type E[log(1+”SINR”)], then the average should be taken over all quantities that are random within the duration of a codeword. Typically, this means averaging over the randomness incurred by the noise, channel estimation errors, and in many cases the small-scale fading. All other parameters must be kept fixed. Typically, user positions, path losses, shadow fading, scheduling and pilot assignments, are fixed, so the expectation is conditional on those. (Yet, the interference statistics may vary substantially, if other users are dropping in and out of the system.) This in turn means that many “drops” have to be generated, where these parameters are drawn at random, and then CDF curves with respect to that second level of randomness needs be computed (numerically).Think of the expectation E[log(1+”SINR”)] as a “link simulation”. Every codeword sees many independent noise realizations, and typically small-scale fading realizations, but the same realization of the user positions. Also, often, neat (and tight) closed-form bounds on E[log(1+”SINR”)] are available.
  3. Care is advised when working with relatively short blocks (less than a few hundred bits) and at rates close to the constrained capacity with the foreseen modulation format. In this case, many of the “standard” capacity bounds become overoptimistic.As a rule of thumb, compare the capacity of an AWGN channel with the constrained capacity of the chosen modulation at the spectral efficiency of interest, and if the gap is small, the capacity bounds will be useful. If not, then reconsider the choice of modulation format! (See also homework problem 1.4.)

How far are the bounds from the actual capacity typically? Nobody knows, but there are good reasons to believe they are extremely close. Here (Figure 1) is a nice example that compares a decoder that uses the measured channel likelihood, instead of assuming a Gaussian (which is implied by the typical bounding techniques). From correspondence with one of the authors: “The dashed and solid lines are the lower bound obtained by Gaussianizing the interference, while the circles are the rate achievable by a decoder exploiting the non-Gaussianity of the interference, painfully computed through days-long Monte-Carlo. (This is not exactly the capacity, because the transmit signals here are Gaussian, so one could deviate from Gaussian signaling and possibly do slightly better — but the difference is imperceptible in all the experiments we’ve done.)”

Concerning Massive MIMO and its capacity bounds, I have met for a long time with arguments that these capacity formulas aren’t useful estimates of actual performance. But in fact, they are: In one simulation study we were less than one dB from the capacity bound by using QPSK and a standard LDPC code (albeit with fairly long blocks). This bound accounts for noise and channel estimation errors. Such examples are in Chapter 1 of Fundamentals of Massive MIMO, and also in the ten-myth paper:

(I wrote the simulation code, and can share it, in case anyone would want to reproduce the graphs.)

So in summary, while capacity bounds are sometimes done wrong; when done right they give pretty good estimates of actual link performance with modern coding.

(With thanks to Angel Lozano for discussions.)

The Common SINR Mistake

We are used to measuring performance in terms of the signal-to-interference-and-noise ratio (SINR), but this is seldom the actual performance metric in communication systems. In practice, we might be interested in a function of the SINR, such as the data rate (a.k.a. spectral efficiency), bit-error-rate, or mean-squared error in the data detection. When the receiver has perfect channel state information (CSI), the aforementioned metrics are all functions of the same SINR expression, where the power of the received signal is divided by the power of the interference plus noise. Details can be found in Examples 1.6-1.8 of the book Optimal Resource Allocation in Coordinated Multi-Cell Systems.

In most cases, the receiver only has imperfect CSI and then it is harder to measure the performance. In fact, it took me years to understand this properly. To explain the complications, consider the uplink of a single-cell Massive MIMO system with K single-antenna users and M antennas at the base station. The received M-dimensional signal is

    $$\mathbf{y} = \sum_{i=1}^{K} \mathbf{h}_{i} x_{i} + \mathbf{n}$$

where $x_{i}$ is the unit-power information signal from user $i$$\mathbf{h}_{i} \in \mathbb{C}^{M}$ is the fading channel from this user, and $\mathbf{n}\in \mathbb{C}^{M}$ is unit-power additive Gaussian noise. In general, the base station will only have access to an imperfect estimate $\hat{\mathbf{h}}_{i} \in \mathbb{C}^{M}$ of $\mathbf{h}_{i}$, for $i=1,\ldots,K.$

Suppose the base station uses  $\hat{\mathbf{h}}_{1},\ldots,\hat{\mathbf{h}}_{K}$ to select a receive combining vector $\mathbf{v}_k\in \mathbb{C}^{M}$ for user $k$. The base station then multiplies it with $\mathbf{y}$ to form a scalar that is supposed to resemble the information signal $x_{k}$:

    $$\mathbf{v}_k^H \mathbf{y} = \underbrace{\mathbf{v}_k^H \mathbf{h}_{k} x_{k}}_\textrm{Desired signal} + \underbrace{\sum_{i=1, i \neq k}^{K} \mathbf{v}_k^H\mathbf{h}_{i} x_{i}}_\textrm{Interference} + \underbrace{\mathbf{v}_k^H \mathbf{w}}_\textrm{Noise}.$$

From this expression, a common mistake is to directly say that the SINR is

    $$\mathrm{SINR}_k^\textrm{wrong} = \frac{| \mathbf{v}_k^H \mathbf{h}_{k}|^2}{ \sum_{i=1, i \neq k}^{K}  | \mathbf{v}_k^H \mathbf{h}_{i}|^2 + \| \mathbf{v}_k \|^2},$$

which is obtained by computing the power of each of the terms (averaged over the signal and noise), and then claim that $\mathbb{E}\{\log_2(1+\mathrm{SINR}_k^\textrm{wrong} )\}$ is an achievable rate (where the expectation is with respect to the random channels). You can find this type of arguments in many papers, without proof of the information-theoretic achievability of this rate value. Clearly, $\mathrm{SINR}_k^\textrm{wrong} $ is an SINR, in the sense that the numerator contains the total signal power and the denominator contains the interference power plus noise power. However, this doesn’t mean that you can plug $\mathrm{SINR}_k^\textrm{wrong} $ into “Shannon’s capacity formula” and get something sensible. This will only yield a correct result when the receiver has perfect CSI.

A basic (but non-conclusive) test of the correctness of a rate expression is to check that the receiver can compute the expression based on its available information (i.e., estimates of random variables and deterministic quantities). Any expression containing $\mathrm{SINR}_k^\textrm{wrong}$ fails this basic test since you need to know the exact channel realizations \mathbf{h}_{1},\ldots,\mathbf{h}_{K} to compute it, although the receiver only has access to the estimates.

What is the right approach?

Remember that the SINR is not important by itself, but we should start from the performance metric of interest and then we might eventually interpret a part of the expression as an effective SINR. In Massive MIMO, we are usually interested in the ergodic capacity. Since the exact capacity is unknown, we look for rigorous lower bounds on the capacity. There are several bounding techniques to choose between, whereof I will describe the two most common ones.

The first lower bound on the uplink capacity can be applied when  the channels are Gaussian distributed and $\hat{\mathbf{h}}_{1}, \ldots, \hat{\mathbf{h}}_{K}$ are the MMSE estimates with the corresponding estimation error covariance matrices $\mathbf{C}_{1},\ldots,\mathbf{C}_{K}$. The ergodic capacity of user $k$ is then lower bounded by

$$R_k^{(1)} = \mathbb{E} \left\{ \log_2 \left(  1 + \frac{| \mathbf{v}_k^H \hat{\mathbf{h}}_{k}|^2}{ \sum_{i=1, i \neq k}^{K}  | \mathbf{v}_k^H \hat{\mathbf{h}}_{i}|^2 + \sum_{i=1}^{K}   \mathbf{v}_k^H \mathbf{C}_{i} \mathbf{v}_k  + \| \mathbf{v}_k \|^2}   \right) \right\}.

Note that this expression can be computed at the receiver using only the available channel estimates (and deterministic quantities). The ratio inside the logarithm can be interpreted as an effective SINR, in the sense that the rate is equivalent to that of a fading channel where the receiver has perfect CSI and an SNR equal to this effective SINR. A key difference from $\mathrm{SINR}_k^\textrm{wrong}$ is that only the part of the desired signal that is received along the estimated channel appears in the numerator of the SINR, while the rest of the desired signal appears as $\mathbf{v}_k^H \mathbf{C}_{k} \mathbf{v}_k$ in the denominator. This is the price to pay for having imperfect CSI at the receiver, according to this capacity bound, which has been used by Hoydis et al. and Ngo et al., among others.

The second lower bound on the uplink capacity is

$$R_k^{(2)} =  \log_2 \left(  1 + \frac{ | \mathbb{E}\{ \mathbf{v}_k^H \mathbf{h}_{k} \} |^2}{ \sum_{i=1}^{K}  \mathbb{E} \{ | \mathbf{v}_k^H \mathbf{h}_{i}|^2 \}  - | \mathbb{E}\{ \mathbf{v}_k^H \mathbf{h}_{k} \} |^2+ \mathbb{E}\{\| \mathbf{v}_k \|^2\} }   \right),

which can be applied for any channel fading distribution. This bound provides a value close to $R_k^{(1)}$ when there is substantial channel hardening in the system, while $R_k^{(2)}$ will greatly underestimate the capacity when $\mathbf{v}_k^H \mathbf{h}_{k}$ varies a lot between channel realizations. The reason is that to obtain this bound, the receiver detects the signal as if it is received over a non-fading channel with gain \mathbb{E}\{ \mathbf{v}_k^H \mathbf{h}_{k} \} (which is deterministic and thus known in theory, and easy to measure in practice), but there are no approximations involved so $R_k^{(2)}$ is always a valid bound.

Since all the terms in $R_k^{(2)} $ are deterministic, the receiver can clearly compute it using its available information. The main merit of $R_k^{(2)}$ is that the expectations in the numerator and denominator can sometimes be computed in closed form; for example, when using maximum-ratio and zero-forcing combining with i.i.d. Rayleigh fading channels or maximum-ratio combining with correlated Rayleigh fading. Two early works that used this bound are by Marzetta and by Jose et al..

The two uplink rate expressions can be proved using capacity bounding techniques that have been floating around in the literature for more than a decade; the main principle for computing capacity bounds for the case when the receiver has imperfect CSI is found in a paper by Medard from 2000. The first concise description of both bounds (including all the necessary conditions for using them) is found in Fundamentals of Massive MIMO. The expressions that are presented above can be found in Section 4 of the new book Massive MIMO Networks. In these two books, you can also find the right ways to compute rigorous lower bounds on the downlink capacity in Massive MIMO.

In conclusion, to avoid mistakes, always start with rigorously computing the performance metric of interest. If you are interested in the ergodic capacity, then you start from one of the canonical capacity bounds in the above-mentioned books and verify that all the required conditions are satisfied. Then you may interpret part of the expression as an SINR.

I Never Thought It Would Happen So Fast

I never thought it would happen so fast. When I started to work on Massive MIMO in 2009, the general view was that fully digital, phase-coherent operation of so many antennas would be infeasible, and that power consumption of digital and analog circuitry would prohibit implementations for the foreseeable future. More seriously, reservations were voiced that reciprocity-based beamforming would not work, or that operation in mobile conditions would be impossible.

These arguments, it turned out, all proved to be wrong. In 2017, Massive MIMO was the main physical-layer technology under standardization for 5G, and it is unlikely that any serious future cellular wireless communications system would not have Massive MIMO as a main technology component.

But Massive MIMO is more than a groundbreaking technology for wireless communications: it is also an elegant and mathematically rigorous approach to teaching wireless communications. In the moderately-large number-of-antennas regime, our closed-form capacity bounds become convenient proxies for the link performance achievable with practical coding and modulation.

These expressions take into account the effects of all significant physical phenomena: small-scale and large-scale fading, intra- and inter-cell interference, channel estimation errors, pilot reuse (also known as pilot contamination) and power control. A comprehensive analytical understanding of these phenomena simply has not been possible before, as the corresponding information theory has too complicated for any practical use.

The intended audiences of Fundamentals of Massive MIMO are engineers and students. I anticipate that as graduate courses on the topic become commonplace, our extensive problem set (with solutions) available online will serve as a useful resource to instructors. While other books and monographs will likely appear down the road, focusing on trendier and more recent research, Fundamentals of Massive MIMO distills the theory and facts that will prevail for the foreseeable future. This, I hope, will become its most lasting impact.

To read the preface of Fundamentals of Massive MIMO, click here. You can also purchase the book here.

New Massive MIMO Book

For the past two years, I’ve been writing on a book about Massive MIMO networks, together with my co-authors Jakob Hoydis and Luca Sanguinetti. It has been a lot of hard work, but also a wonderful experience since we’ve learned a lot in the writing process. We try to connect all dots and provide answers to many basic questions that were previously unanswered.

The book has now been published:

Emil Björnson, Jakob Hoydis and Luca Sanguinetti (2017), “Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency”, Foundations and Trends® in Signal Processing: Vol. 11, No. 3-4, pp 154–655. DOI: 10.1561/2000000093.

What is new with this book?

Marzetta et al. published Fundamentals of Massive MIMO last year. It provides an excellent, accessible introduction to the topic. By considering spatially uncorrelated channels and two particular processing schemes (MR and ZF), the authors derive closed-form capacity bounds, which convey many practical insights and also allow for closed-form power control.

In the new book, we consider spatially correlated channels and demonstrate how such correlation (which always appears in practice) affects Massive MIMO networks. This modeling uncovers new fundamental behaviors that are important for practical system design. We go deep into the signal processing aspects by covering several types of channel estimators and deriving advanced receive combining and transmit precoding schemes.

In later chapters of the book, we cover the basics of energy efficiency, transceiver hardware impairments, and various practical aspects; for example, spatial resource allocation, channel modeling, and antenna array deployment.

The book is self-contained and written for graduate students, PhD students, and senior researchers that would like to learn Massive MIMO, either in depth or at an overview level. All the analytical proofs, and the basic results on which they build, are provided in the appendices.

On the website massivemimobook.com, you will find Matlab code that reproduces all the simulation figures in the book. You can also download exercises and other supplementary material.

Limited-time offer: Get a free copy of the book

Next week, we are giving a tutorial at the Globecom conference. In support of this, the publisher is currently providing free digital copies of the book on their website. This offer is available until December 7.

If you like the book, you can also buy a printed copy from the publisher’s website for the special price of $40! Use the discount code 552568, which is valid until December 31, 2017.

Upcoming Massive MIMO Webinars

IEEE ComSoc is continuing to deliver webinars on 5G topics and Massive MIMO is a key part of several of them. The format is a 40 minute presentation followed by a 20 minuter Q/A session. Hence, if you attend the webinars “live”, you have the opportunity to ask questions to the presenters. Otherwise, you can also watch each webinar afterwards. For example, 5G Massive MIMO: Achieving Spectrum Efficiency, which was given in August by Liesbet Van der Perre (KU Leuven), can still be watched.

In November, the upcoming Massive MIMO webinars are:

Massive MIMO for 5G: How Big Can it Get? by Emil Björnson (Linköping University), Thursday, 9 November 2017, 3:00 PM EST, 12:00 PM PST, 20:00 GMT.

Real-time Prototyping of Massive MIMO: From Theory to Reality by Douglas Kim (NI) and Fredrik Tufvesson (Lund University), Wednesday, 15 November 2017, 12:00 PM EST, 9:00 AM PST, 17:00 GMT.